skip to main content


Search for: All records

Award ID contains: 1848554

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes.

     
    more » « less
  2. The morphology and distribution of volcanic edifices in volcanic terrains encodes the structure and evolution of underlying magma transport as well as surface processes that shape landforms. How magmatic construction and erosion interact on long timescales to sculpt these landscapes, however, remains poorly resolved. In the Cascades arc, distributed volcanic edifices mirror long-wavelength topography associated with underlying crustal magmatism and define the regional drainage divide. The resulting strong along- and across-arc modern precipitation gradients and extensive glaciation provide a natural laboratory for climate-volcano interactions. Here, we use 1,658 volcanic edifice boundaries to quantify volcano morphology at the arc-scale, and reconstruct primary edifice volumes to create first-order estimations of Cascades erosion throughout the Quaternary. Across-arc asymmetry in eroded volumes, mirroring similarly asymmetric spatial distribution of volcanism, suggests a coupling between magmatism and climate in which construction of topography enhances erosion by orographic precipitation and glaciers on million-year timescales. We demonstrate with a coupled landscape evolution and crustal stress model that mountain building associated with magmatism and subsequent orographically-induced erosion can redistribute surface loads and direct subsequent time-averaged magma ascent. This two-way coupling can thus contribute to Myr-scale spatial migration of volcanism observed in the Cascades and other arcs globally. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  3. Combining visual and sonic representations of data can make science more accessible and help reveal subtle details. The recent decade-long eruption of Hawaii’s Kīlauea Volcano offers a prime example. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  4. Two studies, conducted 40 years apart, show how combining field observations and thermal modeling can reconstruct the history of massive lava flows and how they altered the surrounding landscape. 
    more » « less
  5. We develop a method for estimation of parameters of an elastic plate resting on a Winkler-type elastic foundation solely from data on the vertical displacements of the plate. The method allows one to estimate components of the external body force density field, plate thickness, elastic foundation stiffness parameters, horizontal displacements of the plate, and stresses. The key idea of the method is that multiple plate models are used simultaneously, namely the proposed reduced three-dimensional (R3D) plate model, the Mindlin plate model, and the thin plate model. The three plate models form a hierarchy of elastic plate models based on assumptions imposed on stresses, with the R3D plate model being the most generalized model and the thin plate model being the most constrained one. The hierarchical relationship among the plate models allows one to incorporate prior information into the estimation technique. The applicability of the proposed estimation method is illustrated by a numerical example. 
    more » « less