skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1848966

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the problem of learning a class ratio from unlabeled data, which we call CR learning, the training data is unlabeled, and only the ratios, or proportions, of examples receiving each label are given. The goal is to learn a hypothesis that predicts the proportions of labels on the distribution underlying the sample. This model of learning is applicable to a wide variety of settings, including predicting the number of votes for candidates in political elections from polls. In this paper, we formally define this class and resolve foundational questions regarding the computational complexity of CR learning and characterize its relationship to PAC learning. Among our results, we show, perhaps surprisingly, that for finite VC classes what can be efficiently CR learned is a strict subset of what can be learned efficiently in PAC, under standard complexity assumptions. We also show that there exist classes of functions whose CR learnability is independent of ZFC, the standard set theoretic axioms. This implies that CR learning cannot be easily characterized (like PAC by VC dimension). 
    more » « less
  2. Law, Edith ; Vaughan, Jennifer W (Ed.)
    In this paper, we analyze PAC learnability from labels produced by crowdsourcing. In our setting, unlabeled examples are drawn from a distribution and labels are crowdsourced from workers who operate under classification noise, each with their own noise parameter. We develop an end-to-end crowdsourced PAC learning algorithm that takes unlabeled data points as input and outputs a trained classifier. Our threestep algorithm incorporates majority voting, pure-exploration bandits, and noisy-PAC learning. We prove several guarantees on the number of tasks labeled by workers for PAC learning in this setting and show that our algorithm improves upon the baseline by reducing the total number of tasks given to workers. We demonstrate the robustness of our algorithm by exploring its application to additional realistic crowdsourcing settings. 
    more » « less