skip to main content


Search for: All records

Award ID contains: 1849430

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pre-college engineering education still struggles to implement curricula that engage a diverse range of students. Engineering for US All (e4usa) aims to fill this gap through a course that demystifies engineering while catering to a broad range of students. This paper examines the influence of the e4usa course on students’ engagement with engineering design, and their understanding of engineering as a potential future educational and career pathway. Focus group sessions were conducted with students from 12 participating schools during the 2020-21 school year to examine how their interests and understanding of engineering were influenced by the course. There were four main question categories for the focus groups, including: (1) students’ perceptions of engineering, (2) engagement in the e4usa course, (3) influences of the e4usa course, and (4) experiences as a female in engineering. Focus group data were analyzed using open coding and constant comparison methods. Themes emerged from each of the main question categories, giving insight into students’ experiences in the e4usa course. Understanding student experiences in the e4usa course has the potential to impact the future design of pre-college engineering experiences that can lead to a more diverse engineering workforce. 
    more » « less
  2. Research prior to 2005 found that no single framework existed that could capture the engineering design process fully or well and benchmark each element of the process to a commonly accepted set of referenced artifacts. Compounding the construction of a stepwise, artifact driven framework is that engineering design is typically practiced over time as a complex and iterative process. For both novice and advanced students, learning and applying the design process is often cumulative, with many informal and formal programmatic opportunities to practice essential elements. The Engineering Design Process Portfolio Scoring Rubric (EDPPSR) was designed to apply to any portfolio that is intended to document an individual or team driven process leading to an original attempt to design a product, process, or method to provide the best and most optimal solution to a genuine and meaningful problem. In essence, the portfolio should be a detailed account or “biography” of a project and the thought processes that inform that project. Besides narrative and explanatory text, entries may include (but need not be limited to) drawings, schematics, photographs, notebook and journal entries, transcripts or summaries of conversations and interviews, and audio/video recordings. Such entries are likely to be necessary in order to convey accurately and completely the complex thought processes behind the planning, implementation, and self-evaluation of the project. The rubric is comprised of four main components, each in turn comprised of three elements. Each element has its own holistic rubric. The process by which the EDPPSR was created gives evidence of the relevance and representativeness of the rubric and helps to establish validity. The EDPPSR model as originally rendered has a strong theoretical foundation as it has been developed by reference to the literature on the steps of the design process through focus groups and through expert review by teachers, faculty and researchers in performance based, portfolio rubrics and assessments. Using the unified construct validity framework, the EDDPSR’s validity was further established through expert reviewers (experts in engineering design) providing evidence supporting the content relevance and representativeness of the EDPPSR in representing the basic process of engineering design. This manuscript offers empirical evidence that supports the use of the EDPPSR model to evaluate student design-based projects in a reliable and valid manner. Intra-class correlation coefficients (ICC) were calculated to determine the inter-rater reliability (IRR) of the rubric. Given the small sample size we also examined confidence intervals (95%) to provide a range of values in which the estimate of inter-reliability is likely contained. 
    more » « less
  3. Contribution: This single case study represents a unique attempt to examine a music teacher's experiences as he took on the challenge of teaching a high school level engineering course. The study contributes to the growing body of research and conversations around science, technology, engineering, and mathematics (STEM) versus non-STEM beliefs, perceptions, and practices in precollege education. This work informs future teacher professional development (PD) and hiring efforts to broaden the pool of teachers capable of teaching precollege engineering classes. Background: Engineering education is growing in precollege settings but recruiting willing and qualified teachers has been a continuous challenge. Teacher PD programs should consider a broader and inclusive approach that builds confidence and empowers teachers from all disciplinary backgrounds (STEM and non-STEM) to teach precollege engineering classes. Such opportunities are not always made available to non-STEM teachers. Research Questions: 1) How does a high school music teacher with a non-STEM background experience teaching an introductory engineering course? 2) What are the necessary preconditions that could help bridge non-STEM content areas to engineering, specifically for teacher PD efforts? 
    more » « less
  4. Individuals with disabilities, including individuals with an autism spectrum disorder (ASD), are underrepresented in science, technology, engineering, and mathematics (STEM) fields. With the importance of STEM skills in future employment and other disciplines, effective instructional strategies must be identified to enhance early and sustained access to STEM for students with ASD. However, the literature identifying effective STEM-specific supports and practices for this population of students is sparse and regarding engineering, there are no empirical studies that focus on teaching engineering skills to students with ASD. Therefore, the article aims to provide an overview of the available literature on the perspectives of engineering educators and suggested strategies aimed at supporting students with ASD in K-12 instruction and higher education. Additionally, recommendations regarding employment preparation and shifting the workplace environment to support individuals with ASD are presented. The available literature reveals limitations and implications for future research including the presentation of the voices of individuals with ASD across the spectrum. Furthermore, there continues to be work that must be done to prepare educators, employers, peers, and colleagues to better understand the disability and support individuals with ASD in all contexts. 
    more » « less
  5. null (Ed.)
    Research on K-12 integrated STEM settings suggests that engineering design activities play an important role in supporting students’ science learning. Moreover, the National Academies of Sciences, Engineering, and Medicine named improvement in science achievement as an objective of K-12 engineering education. Despite promising findings and the theorized importance of engineering education on science learning, there is little literature that investigates the impact of independent engineering design courses on students’ science learning at the high school level. This sparse exploration motivates our work-in-progress study, which explores the impact of high school students’ exposure to engineering design curriculum on their interest in science through a semi-structured student focus group method. This study is a part of a National Science Foundation-funded project that investigates the implementation of [de-identified program], a yearlong high school course that introduces students across the United States to engineering design principles. The Fall 2020 student focus group protocol built on the [de-identified program] 2019-2020 protocol with the addition of a science interest item to the existing engineering self-efficacy and interest items. Approximately thirty-minute semi-structured student focus groups were conducted and recorded via Zoom, then the transcripts and notes were analyzed using an in-vivo coding method. Our preliminary findings suggest that future studies should aim to gain a deeper understanding of the influence standalone engineering design courses have on students’ science interests and explore the role engineering design teachers play in increasing students’ interest in science. 
    more » « less
  6. null (Ed.)
    The impacts of COVID-19 have led to a rapid pivot in the delivery of professional development (PD) for new teachers to [PROGRAM]. [PROGRAM] previously provided a week-long, in-person, intensive PD in the summer for teachers but PD was shifted online to a mixture of synchronous and asynchronous sessions during the summer of 2020. The goal of this work in progress is to present how the [PROGRAM] team adapted teacher PD to establish community among our teachers and between teachers and staff, use this connection to enhance our responsiveness in PD, and deliver the engaging content of the [PROGRAM] curriculum. Teachers engaging remotely in [PROGRAM] activities have led to productive adaptations based on their challenges. The lessons learned reflecting back upon the PD will inform the design, delivery, and content of future [PROGRAM] teacher PDs. It is expected that future PD and professional learning offerings will continue to utilize flexible modalities and novel online tools, while also working to better align to PD standards. 
    more » « less
  7. null (Ed.)
    The purpose of this study is to re-examine the validity evidence of the engineering design self-efficacy (EDSE) scale scores by Carberry et al. (2010) within the context of secondary education. Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task. In engineering education, significant efforts have been made to understand the role of self-efficacy for students considering its positive impact on student outcomes such as performance and persistence. These studies have investigated and developed measures for different domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific self-efficacy). The EDSE scale is a frequently cited measure that examines task-specific self-efficacy within the domain of engineering design. The original scale contains nine items that are intended to represent the engineering design process. Initial score validity evidence was collected using a sample consisting of 202 respondents with varying degrees of engineering experience including undergraduate/graduate students and faculty members. This scale has been primarily used by researchers and practitioners with engineering undergraduate students to assess changes in their engineering design self-efficacy as a result of active learning interventions, such as project-based learning. Our work has begun to experiment using the scale in a secondary education context in conjunction with an increased introduction to engineering in K-12 education. Yet, there still is a need to examine score validity and reliability of this scale in non-undergraduate populations such as secondary school student populations. This study fills this important gap by testing construct validity of the original nine items of the EDSE scale, supporting proper use of the scale for researchers and practitioners. This study was conducted as part of a larger, e4usa project investigating the development and implementation of a yearlong project-based engineering design course for secondary school students. Evidence of construct validity and reliability was collected using a multi-step process. First, a survey that includes the EDSE scale was administered to the project participating students at nine associated secondary schools across the US at the beginning of Spring 2020. Analysis of collected data is in progress and includes Exploratory Factor Analysis (EFA) on the 137 responses. The evidence of score reliability will be obtained by computing the internal consistency of each resulting factor. The resulting factor structure and items will be analyzed by comparing it with the original EDSE scale. The full paper will provide details about the psychometric evaluation of the EDSE scale. The findings from this paper will provide insights on the future usage of the EDSE scale in the context of secondary engineering education. 
    more » « less
  8. null (Ed.)
    High school counselors play a pivotal role in students’ educational pathways to STEM careers. Guidance provided by these school officials can have a measurable influence on student education and career choices. . School counselors play a critical role in student selection of elective courses, achievement, and fostering an environment through outreach activities. Each of these factors can influence students’ career interests, college choice, and major selection. This is one reason for why it is important to begin planning and having conversations around pursuing an engineering degree in high school to combat the lack of diversity in engineering rooted within the primary and secondary education systems. Recognizing school counselors as an untapped resource and equipping them with the knowledge and resources they need to inform students about engineering will allow them to increase students' motivations and capacities to pursue careers in engineering, especially for historically underrepresented minorities. Such capacity building of school counselors will inherently improve the diversity of our nation's engineering workforce. This research study details the development and evaluation of a professional development (PD) program for high school guidance counselors. The PD was situated within the context of a national high school engineering initiative aimed at demystifying the engineering experience through inclusive, secondary-level engineering curricula. The counselor PD was conducted virtually over the summer of 2020. In total, 15 counselors completed the six-week PD -. Counselors participated in a series of engineering design activities to learn more about the engineering process. They also attended information sessions about engineering stereotypes, stereotype threats, implicit biases, and different disciplines within engineering to better inform their students of future career options. This paper details the development and program structure of the counselor PD. Pre- and post-focus groups were used to gain insight into counselors’ perceptions of engineering. Post-surveys were also collected to determine what counselors thought about the PD. We will provide detail regarding shifts in perceptions of engineering and overall evaluation of the PD. We conclude with a discussion of key takeaways and lessons learned. 
    more » « less
  9. null (Ed.)
    The COVID-19 pandemic disrupted education on all fronts with no warning. The response from K-12 education’s transition has not been as straight forward. Existing issues of equity, access, and inclusion required school districts, schools, and teachers to adopt a variety of solutions, including no instruction, online instruction, and shipping materials/supplies to students at home. The pilot cohort of [program name] teachers provides a unique opportunity to understand how teachers had to transition, especially when implementing a new and innovative engineering curriculum. An anonymous social media post had some interesting insight: “We gave educators almost no notice. We asked them to completely redesign what school looks like, and in about 24 hours, local teachers and administrations fixed it. No state or national agency did this, the local educators fixed it in HOURS. In the midst of a global crisis. In fact, state and national policies actually created roadblocks. Local schools figured out how to work around these. No complaining, no handwringing, just solutions and amazingly clever plans. Get out of the way of a teacher and watch with amazement at what really happens.” We know that high schools adapted quickly. This work-in-progress discusses initial findings from teacher interviews on what happened during this unforeseen and unique transition. Teacher interviews were supplemented with data from teacher focus groups, with data analyzed to examine the impact of the COVID-19 disruption from the perspective of a teacher new to an engineering curriculum. Specifically, we will examine the following research question: How did the pilot year [program name] teachers adapt and deliver the curriculum during the COVID-19 disruption? We are exploring teacher delivery of the [program name] curriculum through a variety of levels to capture the drivers that prompted decisions, identify pedagogical adjustments, and identify drivers behind the chosen changes. 
    more » « less
  10. null (Ed.)
    The delivery mode of education for many high school students changed recently, confining students to attend classes virtually from home. Remote learning can sometimes give students fewer experiential learning opportunities. A focus group discussion was carried out with 35 high school students to explore their perception of their learning environment as it relates to active learning in a remote instruction delivery classroom. Kolb’s experiential learning theory was used to guide this study. The qualitative data gathered were analyzed thematically. Analysis from the data showed that remote learning impacted students’ ability to support each other in project-based learning processes. The effect of remote learning also impacted students' access to peer group resources, materials, and tools needed for effective project-based learning. Results showed that some students preferred working with other students cooperatively on project-based activities while other students preferred working individually on project-based activities. The findings show that team building in high school students continues to be a challenge irrespective of the learning environment, either face-to-face or remote classrooms. Hence, educators have to continue to find ways to strengthen team-work and team building among the students. 
    more » « less