skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1849591

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The field of human-robot interaction (HRI) research is multidisciplinary and requires researchers to understand diverse fields including computer science, engineering, informatics, philosophy, psychology, and more disciplines. However, it is hard to be an expert in everything. To help HRI researchers develop methodological skills, especially in areas that are relatively new to them, we conducted a virtual workshop, Workshop Your Study Design (WYSD), at the 2021 International Conference on HRI. In this workshop, we grouped participants with mentors, who are experts in areas like real-world studies, empirical lab studies, questionnaire design, interview, participatory design, and statistics. During and after the workshop, participants discussed their proposed study methods, obtained feedback, and improved their work accordingly. In this paper, we present 1) Workshop attendees’ feedback about the workshop and 2) Lessons that the participants learned during their discussions with mentors. Participants’ responses about the workshop were positive, and future scholars who wish to run such a workshop can consider implementing their suggestions. The main contribution of this paper is the lessons learned section, where the workshop participants contributed to forming this section based on what participants discovered during the workshop. We organize lessons learned into themes of 1) Improving study design for HRI, 2) How to work with participants - especially children -, 3) Making the most of the study and robot’s limitations, and 4) How to collaborate well across fields as they were the areas of the papers submitted to the workshop. These themes include practical tips and guidelines to assist researchers to learn about fields of HRI research with which they have limited experience. We include specific examples, and researchers can adapt the tips and guidelines to their own areas to avoid some common mistakes and pitfalls in their research. 
    more » « less
  2. As robots are becoming more prevalent and entering hospitality settings, understanding how different configurations of individuals and groups interact with them becomes increasingly important for catering to various people. This is especially important because group dynamics can affect people’s perceptions of situations and behavior in them. We present research examining how individuals and groups interact with and accept a humanoid robot greeter at a real-world café (Study 1) and in an online study (Study 2). In each study, we separately examine interactions of individuals, groups that participants formed after they arrived at the café (new-formed groups), and groups that participants arrived with at the café (pre-formed groups). Results support prior findings that groups are more likely to interact with a public robot than individuals (Study 1). We also report novel findings that new-formed groups interacted more with the robot than pre-formed groups (Study 1). We link this with groups perceiving the robot as more positive and easier to use (Study 2). Future research should examine perceptions of the robot immediately after interaction and in different hospitality contexts. 
    more » « less
  3. null (Ed.)
    The purpose of this workshop is to help researchers develop methodological skills, especially in areas that are relatively new to them. With HRI researchers coming from diverse backgrounds in computer science, engineering, informatics, philosophy, psychology, and more disciplines, we can't be expert in everything. In this workshop, participants will be grouped with a mentor to enhance their study design and interdisciplinary work. Participants will submit 4-page papers with a small introduction and detailed method section for a project currently in the design process. In small groups led by a mentor in the area, they will discuss their method and obtain feedback. The workshop will include time to edit and improve the study. Workshop mentors include Drs. Cindy Bethel, Hung Hsuan Huang, Selma Sabanović, Brian Scassellati, Megan Strait, Komatsu Takanori, Leila Takayama, and Ewart de Visser, with expertise in areas of real-world study, empirical lab study, questionnaire design, interview, participatory design, and statistics. 
    more » « less
  4. null (Ed.)
    This paper presents preliminary research on whether children will accept a robot as part of their ingroup, and on how a robot's group membership affects trust, closeness, and social support. Trust is important in human-robot interactions because it affects if people will follow robots' advice. In this study, we randomly assigned 11- and 12-year-old participants to a condition such that participants were either on a team with the robot (ingroup) or were opponents of the robot (outgroup) for an online game. Thus far, we have eight participants in the ingroup condition. Our preliminary results showed that children had a low level of trust, closeness, and social support with the robot. Participants had a much more negative response than we anticipated. We speculate that there will be a more positive response with an in-person setting rather than a remote one. 
    more » « less
  5. Autonomous robotic vehicles (i.e., drones) are potentially transformative for search and rescue (SAR). This paper works toward wearable interfaces, through which humans team with multiple drones. We introduce the Virtual Drone Search Game as a first step in creating a mixed reality simulation for humans to practice drone teaming and SAR techniques. Our goals are to (1) evaluate input modalities for the drones, derived from an iterative narrowing of the design space, (2) improve our mixed reality system for designing input modalities and training operators, and (3) collect data on how participants socially experience the virtual drones with which they work. In our study, 17 participants played the game with two input modalities (Gesture condition, Tap condition) in counterbalanced order. Results indicated that participants performed best with the Gesture condition. Participants found the multiple controls challenging, and future studies might include more training of the devices and game. Participants felt like a team with the drones and found them moderately agentic. In our future work, we will extend this testing to a more externally valid mixed reality game. 
    more » « less
  6. As robots become prevalent, merely thinking of their existence may affect how people behave. When interacting with a robot, people conformed to the robot’s answers more than to their own initial response [1]. In this study, we examined how robot affect conformity to other humans. We primed participants to think of different experiences: Humans (an experience with a human stranger), Robots (an experience with a robot), or Neutral (daily life). We then measured if participants conformed to other humans in survey answers. Results indicated that people conformed more when thinking of Humans or Robots than of Neutral events. This implies that robots have a similar effect on human conformity to other humans as human strangers do. 
    more » « less