Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Accurate subseasonal prediction of heavy rainfall is helpful for disaster mitigation but challenging. The land thermal condition of Tibetan Plateau (TP), usually with climate memory ranging from weeks to seasons, has been seen as a potential predictability source for subseasonal prediction. Aiming at 2020 record‐breaking Mei‐yu rainfall, this study attempts to investigate whether and how the influence of initial TP surface thermal condition near late June influences the July rainfall prediction over the Middle and Lower Yangtze River Region (MLYR), based on two contrasting prediction experiments using a global climate ensemble prediction system. The results show that the most distinguishable change in the downstream prediction in July is the anomalous low‐tropospheric cyclone and the associated increased rainfall over MLYR corresponding to the warmer initial condition of surface TP. Influenced by the invasion of the positive potential vorticity (PV) center that generated over TP and propagated eastward, this low‐level cyclone anomaly over MLYR is formed within the first week of prediction, and persists for the next 3 weeks maintained by the positive feedback between the low‐level cyclone and middle‐tropospheric latent heating over MLYR in the prediction. This study confirmed the significant effect of TP initial thermal condition on downstream prediction ahead of 3 weeks during the Mei‐yu season (peak summer) with strong land–atmosphere coupling over TP.more » « less
- 
            Abstract Dynamical downscaling with a 20 km horizontal resolution was undertaken over East Asia for the period May–August in 1991–2015 using the Weather Research and Forecasting (WRF) model with Grell-3D ensemble cumulus parameterization as a product of the Impact of Initialized Land Temperature and Snowpack on Sub-Seasonal to Seasonal Prediction (LS4P) program. Simulated climatological precipitation biases were investigated over land during June when heavy precipitation occurred. Simulations underestimated precipitation along the Meiyu/Baiu rainband, while overestimating it farther north. Dry and wet biases expanded to south and north of the Yangtze River in China, respectively, marking years with poor precipitation simulations. Model biases in synoptic-scale circulation patterns indicate a weakened clockwise circulation over the western North Pacific in the model due to active convection there, and suppressed northward moisture transport to the Meiyu/Baiu rainband. Moisture convergence was slightly enhanced over central China due to an apparent anticyclonic circulation bias over northern China. In years with large biases, positive feedback between reduced moisture inflow and inactive convection occurred over southern China, while moisture transport to central China intensified on regional scales, with amplification of dry and wet biases over China. The Kain–Fritch scheme was used to test the influence of cumulus parameterization, improving the dry bias over southern China due to the modification of synoptic-scale circulation patterns in the lower troposphere. However, precipitation was further overestimated over central China, with the accuracy of precipitation distribution deteriorating.more » « less
- 
            Abstract Reliable subseasonal-to-seasonal (S2S) precipitation prediction is highly desired due to the great socioeconomical implications, yet it remains one of the most challenging topics in the weather/climate prediction research area. As part of the Impact of Initialized Land Temperature and Snowpack on Sub-seasonal to Seasonal Prediction (LS4P) project of the Global Energy and Water Exchanges (GEWEX) program, twenty-one climate models follow the LS4P protocol to quantify the impact of the Tibetan Plateau (TP) land surface temperature/subsurface temperature (LST/SUBT) springtime anomalies on the global summertime precipitation. We find that nudging towards reanalysis winds is crucial for climate models to generate atmosphere and land surface initial conditions close to observations, which is necessary for meaningful S2S applications. Simulations with nudged initial conditions can better capture the summer precipitation responses to the imposed TP LST/SUBT spring anomalies at hotspot regions all over the world. Further analyses show that the enhanced S2S prediction skill is largely attributable to the substantially improved initialization of the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train pattern in the atmosphere. This study highlights the important role that initial condition plays in the S2S prediction and suggests that data assimilation technique (e.g., nudging) should be adopted to initialize climate models to improve their S2S prediction.more » « less
- 
            Abstract Subseasonal to seasonal (S2S) prediction of droughts and floods is one of the major challenges of weather and climate prediction. Recent studies suggest that the springtime land surface temperature/subsurface temperature (LST/SUBT) over the Tibetan Plateau (TP) can be a new source of S2S predictability. The project “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction (LS4P)” was initiated to study the impact of springtime LST/SUBT anomalies over high mountain areas on summertime precipitation predictions. The present work explores the simulated global scale response of the atmospheric circulation to the springtime TP land surface cooling by 16 current state-of-the-art Earth System Models (ESMs) participating in the LS4P Phase I (LS4P-I) experiment. The LS4P-I results show, for the first time, that springtime TP surface anomalies can modulate a persistent quasi-barotropic Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train from the TP via the northeast Asia and Bering Strait to the western part of the North America, along with the springtime westerly jet from TP across the whole North Pacific basin. The TRC wave train modulated by the TP thermal anomaly play a critical role on the early summer surface air temperature and precipitation anomalies in the regions along the wave train, especially over the northwest North America and the southern Great Plains. The participant models that fail in capturing the TRC wave train greatly under-predict climate anomalies in reference to observations and the successful models. These results suggest that the TP LST/SUBT anomaly via the TRC wave train is the first order source of the S2S variability in the regions mentioned. Furthermore, the TP surface temperature anomaly can influence the Southern Hemispheric circulation by generating cross-equator wave trains. However, the simulated propagation pathways from the TP into the Southern Hemisphere show large inter-model differences. More dynamical understanding of the TRC wave train as well as its cross-equator propagation into the Southern Hemisphere will be explored in the newly launched LS4P phase II experiment.more » « less
- 
            Abstract The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.more » « less
- 
            Abstract Land surface processes are vital to the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation by using the weather research and forecasting (WRF) model at 10-km resolution to the land surface schemes over Central Asia. The WRF model was run for 19 summers from 2000 to 2018 configured with four different land surface schemes including CLM4, Noah-MP, Pleim-Xiu and SSiB, hereafter referred as Exp-CLM4, Exp-Noah-MP, Exp-PX and Exp-SSiB respectively. The initial and boundary conditions for the WRF model simulations were provided by the National Centers for Environmental Prediction Final (NCEP-FNL) Operational Global Analysis data. The ERA-Interim reanalysis (ERAI), the GHCN-CAMS and the CRU gridded data were used to comprehensively evaluate the WRF simulations. Compared with the reanalysis and observational data, the WRF model can reasonably reproduce the spatial patterns of summer mean 2-m temperature, precipitation, and large- scale atmospheric circulation. The simulations, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by Multivariable Integrated Evaluation (MVIE) method. To comprehensively understand the dynamic and physical mechanisms for the WRF model’s sensitivity to land surface schemes, the differences in the surface energy balance between Ave-CLM4-SSiB (the ensemble average of Exp-CLM4 and Exp-SSiB) and Ave-NoanMP-PX (the ensemble average of Exp-Noah-MP and Exp-PX) are analyzed in detail. The results demonstrate that the sensible and latent heat fluxes are respectively lower by 30.42 W·m−2and higher by 14.86 W·m−2in Ave-CLM4-SSiB than that in Ave-NoahMP-PX. As a result, large differences in geopotential height occur over the simulation domain. The simulated wind fields are subsequently influenced by the geostrophic adjustment process, thus the simulations of 2-m temperature, surface skin temperature and precipitation are respectively lower by about 2.08 ℃, 2.23 ℃ and 18.56 mm·month−1in Ave-CLM4-SSiB than that in Ave-NoahMP-PX over Central Asia continent.more » « less
- 
            Abstract Earlier studies of land use land cover change (LULCC) normally used only a specified LULCC map with no interannual variations. In this study, using an Atmospheric General Circulation Model (AGCM) coupled with a land surface model, biophysical impacts of LULCC on global and regional climate are investigated by using a LULCC map which covers 63 years from 1948 to 2010 with interannual variation. A methodology has been developed to convert a recently developed LULCC fraction map with 1° × 1° resolution to the AGCM grid points in which only one dominant type is allowed. Comprehensive evaluations are conducted to ensure consistency of the trend of the original LULCC fraction change and the trend of the fraction of grid point changes over different regions. The model was integrated with a potential vegetation map (CTL) and the map with LULCC, in which a set of surface parameters such as leaf area index, albedo and other soil and vegetation parameters were accordingly changed with interannual variation. The results indicate that the interannual LULCC map simulation is able to reproduce better interannual variability of surface temperature and rainfall when compared to the control simulation. LULCC causes negative effect on global precipitation, with the strongest significant signals over degraded regions such as East Asia, West Africa and South America, and some of these changes are consistent with observed regional anomalies for certain time periods. LULCC causes reduction in net radiation and evapotranspiration which leads to changes in monsoon circulation and variation in magnitude and pattern of moisture flux convergence and subsequent reduction in precipitation. Meanwhile, LULCC enhances surface warming during the summer in the LULCC regions due to greatly reduced evapotranspiration. In contradiction to the surface, upper troposphere temperatures are cool because of less latent heat released into the upper troposphere, which leads to weaker circulation in LULCC regions.more » « less
- 
            Free, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
