skip to main content


Search for: All records

Award ID contains: 1849904

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Fuzzy extractors derive stable keys from noisy sources. They are a fundamental tool for key derivation from biometric sources. This work introduces a new construction, code offset in the exponent. This construction is the first reusable fuzzy extractor that simultaneously supports structured, low entropy distributions with correlated symbols and confidence information. These properties are specifically motivated by the most pertinent applications – key derivation from biometrics and physical unclonable functions – which typically demonstrate low entropy with additional statistical correlations and benefit from extractors that can leverage confidence information for efficiency. Code offset in the exponent is a group encoding of the code offset construction (Juels and Wattenberg, CCS 1999). A random codeword of a linear error-correcting code is used as a one-time pad for a sampled value from the noisy source. Rather than encoding this directly, code offset in the exponent encodes by exponentiation of a generator in a cryptographically strong group. We introduce and characterize a condition on noisy sources that directly translates to security of our construction in the generic group model. Our condition requires the inner product between the source distribution and all vectors in the null space of the code to be unpredictable. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    Networks are designed with functionality, security, performance, and cost in mind. Tools exist to check or optimize individual properties of a network. These properties may conflict, so it is not always possible to run these tools in series to find a configuration that meets all requirements. This leads to network administrators manually searching for a configuration. This need not be the case. In this paper, we introduce a layered framework for optimizing network configuration for functional and security requirements. Our framework is able to output configurations that meet reachability, bandwidth, and risk requirements. Each layer of our framework optimizes over a single property. A lower layer can constrain the search problem of a higher layer allowing the framework to converge on a joint solution. Our approach has the most promise for software-defined networks which can easily reconfigure their logical configuration. Our approach is validated with experiments over the fat tree topology, which is commonly used in data center networks. Search terminates in between 1–5 min in experiments. Thus, our solution can propose new configurations for short term events such as defending against a focused network attack. 
    more » « less