skip to main content


Search for: All records

Award ID contains: 1849965

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Silicon photonics is an emerging technology which, enabling nanoscale manipulation of light on chips, impacts areas as diverse as communications, computing, and sensing. Wavelength division multiplexing is commonly used to maximize throughput over a single optical channel by modulating multiple data streams on different wavelengths concurrently. Traditionally, wavelength (de)multiplexers are implemented as monolithic devices, separate from the grating coupler, used to couple light into the chip. This paper describes the design and measurement of a grating coupler demultiplexer—a single device which combines both light coupling and demultiplexing capabilities. The device was designed by means of a custom inverse design algorithm which leverages boundary integral Maxwell solvers of extremely rapid convergence as the mesh is refined. To the best of our knowledge, the fabricated device enjoys the lowest insertion loss reported for grating demultiplexers, small size, high splitting ratio, and low coupling-efficiency imbalance between ports, while meeting the fabricability constraints of a standard UV lithography process.

     
    more » « less
  2. Recent developments in the computational automated design of electromagnetic devices, otherwise known as inverse design, have significantly enhanced the design process for nanophotonic systems. Inverse design can both reduce design time considerably and lead to high-performance, nonintuitive structures that would otherwise have been impossible to develop manually. Despite the successes enjoyed by structure optimization techniques, most approaches leverage electromagnetic solvers that require significant computational resources and suffer from slow convergence and numerical dispersion. Recently, a fast simulation and boundary-based inverse design approach based on boundary integral equations was demonstrated for two-dimensional nanophotonic problems. In this work, we introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to have been optimized using full-wave 3D solution of Maxwell’s equations. 
    more » « less
  3. Boundary element methods (BEM) have been successfully applied towards solving a broad array of complicated electromagnetic problems. Most BEM approaches rely on flat triangular discretizations and discretization via the Method of Moments (MoM) and low-order basis functions. Although more complicated from an implementation standpoint, it has been shown that high-order methods based on curvilinear patch mesh discretizations can significantly outperform low-order MoM in both accuracy and computational efficiency. In this work, we review a new high-order Nyström method based on using Chebyshev basis functions with curvilinear elements that we have recently developed, present a few scattering examples, and discuss related on-going and future work. 
    more » « less
  4. null (Ed.)