skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1850348

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The analysis of massive datasets requires a large number of processors. Prior research has largely assumed that tracking the actual data distribution and the underlying network structure of a cluster, which we collectively refer to as the topology, comes with a high cost and has little practical benefit. As a result, theoretical models, algorithms and systems often assume a uniform topology; however this assumption rarely holds in practice. This necessitates an end-to-end investigation of how one can model, design and deploy topology-aware algorithms for fundamental data processing tasks at large scale. To achieve this goal, we first develop a theoretical parallel model that can jointly capture the cost of computation and communication. Using this model, we explore algorithms with theoretical guarantees for three basic tasks: aggregation, join, and sorting. Finally, we consider the practical aspects of implementing topology-aware algorithms at scale, and show that they have the potential to be orders of magnitude faster than their topology-oblivious counterparts. 
    more » « less