skip to main content

Search for: All records

Award ID contains: 1850510

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adversaries are often able to penetrate networks and compromise systems by exploiting vulnerabilities in people and systems. The key to the success of these attacks is information that adversaries collect throughout the phases of the cyber kill chain. We summarize and analyze the methods, tactics, and tools that adversaries use to conduct reconnaissance activities throughout the attack process. First, we discuss what types of information adversaries seek and how and when they can obtain this information. Then, we provide a taxonomy and detailed overview of adversarial reconnaissance techniques. The taxonomy introduces a categorization of reconnaissance techniques based on the source as third-party and human-, and system-based information gathering. This article provides a comprehensive view of adversarial reconnaissance that can help in understanding and modeling this complex but vital aspect of cyber attacks as well as insights that can improve defensive strategies, such as cyber deception. 
    more » « less
    Free, publicly-accessible full text available July 31, 2024
  2. Although researchers have characterized the bug-bounty ecosystem from the point of view of platforms and programs, minimal effort has been made to understand the perspectives of the main workers: bug hunters. To improve bug bounties, it is important to understand hunters’ motivating factors, challenges, and overall benefits. We address this research gap with three studies: identifying key factors through a free listing survey (n=56), rating each factor’s importance with a larger-scale factor-rating survey (n=159), and conducting semi-structured interviews to uncover details (n=24). Of 54 factors that bug hunters listed, we find that rewards and learning opportunities are the most important benefits. Further, we find scope to be the top differentiator between programs. Surprisingly, we find earning reputation to be one of the least important motivators for hunters. Of the challenges we identify, communication problems, such as unresponsiveness and disputes, are the most substantial. We present recommendations to make the bug-bounty ecosystem accommodating to more bug hunters and ultimately increase participation in an underutilized market. 
    more » « less
  3. In the wake of a cybersecurity incident, it is crucial to promptly discover how the threat actors breached security in order to assess the impact of the incident and to develop and deploy countermeasures that can protect against further attacks. To this end, defenders can launch a cyber-forensic investigation, which discovers the techniques that the threat actors used in the incident. A fundamental challenge in such an investigation is prioritizing the investigation of particular techniques since the investigation of each technique requires time and effort, but forensic analysts cannot know which ones were actually used before investigating them. To ensure prompt discovery, it is imperative to provide decision support that can help forensic analysts with this prioritization. A recent study demonstrated that data-driven decision support, based on a dataset of prior incidents, can provide state-of-the-art prioritization. However, this data-driven approach, called DISCLOSE, is based on a heuristic that utilizes only a subset of the available information and does not approximate optimal decisions. To improve upon this heuristic, we introduce a principled approach for data-driven decision support for cyber-forensic investigations. We formulate the decision-support problem using a Markov decision process, whose states represent the states of a forensic investigation. To solve the decision problem, we propose a Monte Carlo tree search based method, which relies on a k-NN regression over prior incidents to estimate state-transition probabilities. We evaluate our proposed approach on multiple versions of the MITRE ATT&CK dataset, which is a knowledge base of adversarial techniques and tactics based on real-world cyber incidents, and demonstrate that our approach outperforms DISCLOSE in terms of techniques discovered per effort spent. 
    more » « less
  4. Recently, bug-bounty programs have gained popularity and become a significant part of the security culture of many organizations. Bug-bounty programs enable organizations to enhance their security posture by harnessing the diverse expertise of crowds of external security experts (i.e., bug hunters). Nonetheless, quantifying the benefits of bug-bounty programs remains elusive, which presents a significant challenge for managing them. Previous studies focused on measuring their benefits in terms of the number of vulnerabilities reported or based on the properties of the reported vulnerabilities, such as severity or exploitability. However, beyond these inherent properties, the value of a report also depends on the probability that the vulnerability would be discovered by a threat actor before an internal expert could discover and patch it. In this paper, we present a data-driven study of the Chromium and Firefox vulnerability-reward programs. First, we estimate the difficulty of discovering a vulnerability using the probability of rediscovery as a novel metric. Our findings show that vulnerability discovery and patching provide clear benefits by making it difficult for threat actors to find vulnerabilities; however, we also identify opportunities for improvement, such as incentivizing bug hunters to focus more on development releases. Second, we compare the types of vulnerabilities that are discovered internally vs. externally and those that are exploited by threat actors. We observe significant differences between vulnerabilities found by external bug hunters, internal security teams, and external threat actors, which indicates that bug-bounty programs provide an important benefit by complementing the expertise of internal teams, but also that external hunters should be incentivized more to focus on the types of vulnerabilities that are likely to be exploited by threat actors. 
    more » « less
  5. null (Ed.)
  6. Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various lev- els of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between a defender and an adversary. We characterize the defender’s optimal attestation strategy in a variety of special cases. Finally, building on experimental results from our testbed, we evaluate our model and show that optimal strategic attestation can lead to significantly lower losses than naive baseline strategies. 
    more » « less
  7. null (Ed.)
    Mobile devices encroach on almost every part of our lives, including work and leisure, and contain a wealth of personal and sensitive information. It is, therefore, imperative that these devices uphold high security standards. A key aspect is the security of the underlying operating system. In particular, Android plays a critical role due to being the most dominant platform in the mobile ecosystem with more than one billion active devices and due to its openness, which allows vendors to adopt and customize it. Similar to other platforms, Android maintains security by providing monthly security patches and announcing them via the Android security bulletin. To absorb this information successfully across the Android ecosystem, impeccable coordination by many different vendors is required. In this paper, we perform a comprehensive study of 3,171 Android-related vulnerabilities and study to which degree they are reflected in the Android security bulletin, as well as in the security bulletins of three leading vendors: Samsung, LG, and Huawei. In our analysis, we focus on the metadata of these security bulletins (e.g., timing, affected layers, severity, and CWE data) to better understand the similarities and differences among vendors. We find that (i) the studied vendors in the Android ecosystem have adopted different structures for vulnerability reporting, (ii) vendors are less likely to react with delay for CVEs with Android Git repository references, (iii) vendors handle Qualcomm-related CVEs different from the rest of external layer CVEs. 
    more » « less