skip to main content


Search for: All records

Award ID contains: 1850667

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Typical use of ambient noise interferometry focuses on longer period (>1 s) waves for exploration of subsurface structure and other applications, while very shallow structure and some environmental seismology applications may benefit from use of shorter period (<1 s) waves. We explore the potential for short‐period ambient noise interferometry to determine shallow seismic velocity structures by comparing two methodologies, the conventional amplitude‐based cross‐correlation and linear stacking (TCC‐Lin) and a more recently developed phase cross‐correlation and time‐frequency phase‐weighted‐stacking (PCC‐PWS) method with both synthetic and real data collected in a heterogeneous karst aquifer system. Our results suggest that the PCC‐PWS method is more effective in extracting short‐period wave velocities than the TCC‐Lin method, especially when using data collected in regions containing complex shallow structures such as the karst aquifer system investigated here. In addition to the different methodologies for computing the cross correlation functions, we also examine the relative importance of signal‐to‐noise ratio and number of wavelengths propagating between station pairs to determine data/solution quality. We find that the lower number of wavelengths of 3 has the greatest impact on the network‐averaged group velocity curve. Lastly, we test the sensitivity of the number of stacks used to create the final empirical Green's function, and find that the PCC‐PWS method required about half the number of cross‐correlation functions to develop reliable velocity curves compared to the TCC‐Lin method. This is an important advantage of the PCC‐PWS method when available data collection time is limited.

     
    more » « less
  2. Abstract

    Variations in subsurface flow processes through a karst aquifer that feeds Bear Spring in southeastern Minnesota were captured on a temporary seismic network during injection experiments and a natural recharge event. Each experiment involved injecting ∼13,000 L of water into an overflow spring, and the natural event was triggered by a large rainstorm of ∼70 min in duration. During the injection experiments, the largest amplitude signals in the ground velocity seismograms occurred as the water first fell onto the rock at the overflow spring and as the large slug of water reached a sump or water‐filled passage. During the natural rainstorm event, the overflow spring began flowing and total spring discharge (perennial emanation points and the overflow spring) increased from ∼100 to 300 L/s. Seismic signals during and following the rain event include broadband noise from raindrops impacting the ground, as well as large amplitude signals while water levels rose; the latter occurred over a 5‐s period, producing multiple pulses of ground motion up to ∼0.5 mm/s. Based on seismic array analysis, high frequency signals during the natural recharge event and one of the injection experiments are largely sourced from south of the array, where a sump exists and the conduit orientation changes, but additional modeling is required to further understand which of a set of possible mechanisms is mostly likely the cause of these seismic signals.

     
    more » « less
  3. Free, publicly-accessible full text available November 1, 2024
  4. null (Ed.)
    The increased environmental abundance of anthropogenic reactive nitrogen species (Nr = ammonium [NH4+], nitrite [NO2−] and nitrate [NO3−]) may increase atmospheric nitrous oxide (N2O) concentrations, and thus global warming and stratospheric ozone depletion. Nitrogen cycling and N2O production, reduction, and emissions could be amplified in carbonate karst aquifers because of their extensive global range, susceptibility to nitrogen contamination, and groundwater-surface water mixing that varies redox conditions of the aquifer. The magnitude of N2O cycling in karst aquifers is poorly known, however, and thus we sampled thirteen springs discharging from the karstic Upper Floridan Aquifer (UFA) to evaluate N2O cycling. The springs can be separated into three groups based on variations in subsurface residence times, differences in surface–groundwater interactions, and variable dissolved organic carbon (DOC) and dissolved oxygen (DO) concentrations. These springs are oxic to sub-oxic and have NO3− concentrations that range from < 0.1 to 4.2 mg N-NO3−/L and DOC concentrations that range from < 0.1 to 50 mg C/L. Maximum spring water N2O concentrations are 3.85 μg N-N2O/L or ~ 12 times greater than water equilibrated with atmospheric N2O. The highest N2O concentrations correspond with the lowest NO3− concentrations. Where recharge water has residence times of a few days, partial denitrification to N2O occurs, while complete denitrification to N2 is more prominent in springs with longer subsurface residence times. Springs with short residence times have groundwater emission factors greater than the global average of 0.0060, reflecting N2O production, whereas springs with residence times of months to years have groundwater emission factors less than the global average. These findings imply that N2O cycling in karst aquifers depends on DOC and DO concentrations in recharged surface water and subsequent time available for N processing in the subsurface. 
    more » « less
  5. The proposed study aims to deploy seismometers, tiltmeters, and other equipment at the Santa Fe River Sink-Rise system in FL to monitor geophysical responses to recharge events over a two-year period. Geophysical data collected as part of this project will leverage ongoing data collection efforts to enable the interpretation of geophysical responses that arise from hydrologic processes. The overall goal of this remote sensing study is to develop new techniques using data collected at the surface to identify the location of conduits and other subsurface features as well as to provide constraints on flow and hydrologic processes in karst aquifers. 
    more » « less
  6. This is a pilot project to test feasibility of identifying seismic tremor associated with discharge into an aquifer. We are proposing to conduct three recharge experiments near Preston, MN. The site includes a sinkhole and spring that are ~100 m apart. Artificial recharge events will be conducted by filling a pool with water and then releasing the water into the sinkhole to produce a pressure pulse. For each experiment, the water will be released at a different rate to test aquifer response to a range of recharge rates. We will use a variety of geophysical sensors to probe the response to the recharge events in multiple ways. 
    more » « less