skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1851368

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mesopelagic zone is a site of strong microbially driven particle attenuation with depth and thus plays a crucial role in controlling the transfer efficiency of the ocean's biological pump. However, little quantitative information exists on the dependency of decay processes on the source material. Here we followed the decay of14C‐labeled dead particulate organic carbon (POC) and dissolved organic carbon (DOC) from three different phytoplankton species, and two incubations of live diatoms, in mesopelagic water over 3 months. Commonly used first‐order kinetics failed to adequately describe the decay of organic material as rate constants varied from day to day. Over extended periods, decay rates for organic material exhibited two distinct phases, with rates in the second phase being inversely related to rates in the first phase. Microbial biomass (measured via adenosine triphosphate and cell counts) increased substantially during phase 1 and ebbed during phase 2. Decay rates were significantly different among the three algal sources; however, differences were even more pronounced among carbon pools and followed a distinct pattern (combined average per‐day decay rates at 12°C): fresh DOC (0.6) > fresh POC (0.1) > live cells (0.06) > aged DOC/POC (0.01). Separation of POC into four broad biochemical fractions showed that components in the operationally defined lipid fraction contained the most degradable compounds for fresh material. Our research highlights the need to include the dynamics of the most easily digestible fractions of freshly released organic material, and live plankton resilient to digestion, in calculations of vertical carbon flux budgets. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatomThalassiosira weissflogiias a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available luciferin‐luciferase assay, and employed single‐photon counting in a scintillation counter, all of which increased sensitivity and throughput. Per‐cell ATP levels remained relatively constant despite changes in growth rates by approximately 10‐fold in the batch culture (i.e., nutrient limitation) experiments, and approximately 2‐fold in response to temperature. The re‐examination of related literature values revealed that average cellular ATP levels differed little among taxonomic groups of aquatic microbes, even at the domain level, and correlated well with bulk properties such as elemental carbon or nitrogen. Fulfilling multiple cellular functions in addition to being the universal energy currency requires ATP to be maintained in a millimolar concentration range. Consequently, ATP relates directly to live cytoplasm volume, while elemental carbon and nitrogen are constrained by an indeterminate pool of detrital material and intracellular storage compounds. The ATP‐biomass indicator is sensitive, economical, and can be readily standardized among laboratories and across environments. 
    more » « less
  3. A new, simplified protocol for determining particulate adenosine triphosphate (ATP) levels allows for the assessment of microbial biomass distribution in aquatic systems at a high temporal and spatial resolution. A comparison of ATP data with related variables, such as particulate carbon, nitrogen, chlorophyll, and turbidity in pelagic samples, yielded significant and strong correlations in a gradient from the tributaries of the Chesapeake Bay (sigma-t = 8) to the open North Atlantic (sigma-t = 29). Correlations varied between ATP and biomass depending on the microscopic method employed. Despite the much greater effort involved, biomass determined by microscopy correlated poorly with other indicator variables including carbon, nitrogen, and chlorophyll. The ATP values presented here fit well within the range of ATP biomass estimates in the literature for similar environments. A compilation of prior research data from a wide range of marine habitats demonstrated that ATP values can be ranked according to broad trophic gradients, from the deep sea to eutrophic inland waters. Using a mass-based conversion factor of 250, the contribution of biomass to overall particulate organic carbon (POC) ranged from 15% to 30% along the gradient, from the open ocean to locations in the Chesapeake Bay respectively. Our data corroborate the notion that ATP, due to its consistency and simplicity, is a promising high-throughput indicator of cytoplasm volume with distinct benefits over cell counts and measures of chlorophyll or POC. 
    more » « less