skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1851640

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oxidative phenol coupling reduces reliance on halo/metalated substrates used in conventional redox neutral couplings. A new strategy for constructing polycyclic aromatic hydrocarbons (PAHs) that incorporates oxidative phenol coupling is outlined in a three‐stage approach: oxidative fragment coupling, linking of the two resultant units, and oxidative cyclization. The protocol allows rapid assembly of both planar and helical systems with a high degree of edge functionalization. The incorporation of 12 alkoxy groups on systems with 12 rings gave rise to lower optical gaps compared to systems with a lesser degree of edge functionalization. 
    more » « less
  2. The synthesis of enantioenriched aziridines is important for drug development due to their prevalence in bioactive molecules. Previous methods often use expensive catalysts, activated substrates, or show poor stereoselectivity. Herein,... 
    more » « less
    Free, publicly-accessible full text available September 1, 2026