skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1852199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we establish a physical access control mechanism for vehicular platoons. The goal is to restrict vehicle-to-vehicle (V2V) communications to platooning members by tying the digital identity of a candidate vehicle requesting to join a platoon to its physical trajectory relative to the platoon. We propose the Wiggle protocol that employs a physical challenge-response exchange to prove that a candidate requesting to be admitted into a platoon actually follows it. The protocol name is inspired by the random longitudinal movements that the candidate is challenged to execute. Wiggle prevents any remote adversary from joining the platoon and injecting fake V2V messages. Compared to prior works, Wiggle is resistant to prerecording attacks and can verify that the candidate is traveling behind the verifier in the same lane. 
    more » « less
  2. null (Ed.)
    Utilization of multiple-input multiple-output (MIMO) systems as a means of increasing channel capacity has been an area of increasing consideration in radio communications. However, less study has been devoted to MIMO in the high-frequency band. This research is important because high-frequency communication using MIMO allows for international communication at long distances using lower power consumption than many other approaches. The inter-symbol interference caused by the selective fading of multiple received signals and the randomness of the ionospheric conditions means there is a need for a novel solution. The purpose of this research is to introduce two machine learning approaches that can adaptively apply equalization algorithms to address fading and optimize equalization parameters. The novelty of our approach lies in two main factors. The first is that our approach allows for a software-defined radio to switch equalization algorithms depending on conditions during run-time. The second is that we optimize this selected algorithm further by using two machine-learning approaches. The first proposed cognitive engine model, which utilizes a genetic algorithm, demonstrates the validity and advantage of using a cognitive engine to select optimal equalization parameters at the receiver under the problems created by utilizing the high-frequency band. This approach acts as a comparison for our second. We then propose a second cognitive engine, the adaptive manipulator, which optimizes not only by selecting equalization parameters but also continually changes the equalization algorithm. Finally, we compare the performance of the proposed cognitive engine models with state-of-the-art algorithms. 
    more » « less