skip to main content


Search for: All records

Award ID contains: 1852510

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two different cases are encountered in the thermal analysis of solids. In the first case, continua are not subject to boundary and motion constraints and all material points experience same displacement-gradient changes as the result of application of thermal loads. In this case, referred to as unconstrained thermal expansion, the thermal load produces uniform stress-free motion within the continuum. In the second case, point displacements due to boundary and motion constraints are restricted, and therefore, continuum points do not move freely when thermal loads are applied. This second case, referred to as constrained thermal expansion, leads to thermal stresses and its study requires proper identification of the independent coordinates which represent expansion degrees-of-freedom. To have objective evaluation and comparison between the two cases of constrained and unconstrained thermal expansion, the reference-configuration geometry is accurately described using the absolute nodal coordinate formulation (ANCF) finite elements. ANCF position-gradient vectors have unique geometric meanings as tangent to coordinate lines, allowing systematic description of the two different cases of unconstrained and constrained thermal expansions using multiplicative decomposition of the matrix of position-gradient vectors. Furthermore, generality of the approach for large-displacement thermal analysis requires using the Lagrange–D'Alembert principle for proper treatment of algebraic constraint equations. Numerical results are presented to compare two different expansion cases, demonstrate use of the new approach, and verify its results by comparing with conventional finite element (FE) approaches. 
    more » « less
  2. Abstract This paper introduces a new computational approach for the articulated joint/deformation actuation and motion control of robot manipulators with flexible components. Oscillations due to small deformations of relatively stiff robot components which cannot be ignored, are modeled in this study using the finite element (FE) floating frame of reference (FFR) formulation which employs two coupled sets of coordinates: the reference and elastic coordinates. The inverse dynamics, based on the FFR formulation, leads to driving forces associated with the deformation degrees of freedom. Because of the link flexibility, two approaches can be considered to determine the actuation forces required to achieve the desired motion trajectories. These two approaches are the partially constrained inverse dynamics (PCID) and the fully constrained inverse dynamics (FCID). The FCID approach, which will be considered in future investigations and allows for motion and shape control, can be used to achieve the desired motion trajectories and suppress undesirable oscillations. The new small-deformation PCID approach introduced in this study, on the other hand, allows for achieving the desired motion trajectories, determining systematically the actuation forces and moments associated with the robot joint and elastic degrees of freedom, and avoiding deteriorations in the vibration characteristics as measured by the differences between the inverse- and forward-dynamics solutions. A procedure for determining the actuation forces associated with the deformation degrees of freedom is proposed and is exemplified using piezoelectric actuators. The PCID solution is used to define a new set of algebraic equations that can be solved for the piezoelectric actuation voltages required to maintain the forward-dynamics oscillations within their inverse-dynamics limits. A planar two-link flexible-robot manipulator is presented to demonstrate the implementation of the joint/deformation actuation approach. The results obtained show deterioration in the robot precision if the deformation actuation is not considered. 
    more » « less
  3. null (Ed.)