skip to main content

Search for: All records

Award ID contains: 1852510

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 2, 2023
  2. Free, publicly-accessible full text available January 20, 2023
  3. Free, publicly-accessible full text available September 1, 2022
  4. continuum-based approach for simultaneously controlling the motion and shape of soft robots and materials (SRM) is proposed. This approach allows for systematically computing the actuation forces for arbitrary desired SRM motion and geometry. In order to control both motion and shape the position and position gradients of the absolute nodal coordinate formulation (ANCF) are used to formulate rheonomic specified trajectory and shape constraint equations, used in an inverse dynamics procedure to define the actuation control forces. Unlike control of rigid-body systems which requires a number of independent actuation forces equal to the number of the joint coordinates, the SRM motion/shapemore »control leads to generalized control forces which need to be interpreted differently in order to properly define the actuation forces. While the definition of these motion/shape control forces is demonstrated using air pressure actuation commonly used in the SRM control, the proposed procedure can be applied to other SRM actuation types. The approaches for determining the actuation pressure in the two cases of space-dependent and constant pressures are outlined. Effect of the change in the surface geometry on the actuation pressure is accounted for using Nanson’s formula. The obtained numerical results demonstrate that the motion and shape can be simultaneously controlled using the new actuation force definitions.« less
  5. Abstract The convergence characteristics of three geometrically accurate spatial finite elements (FEs) are examined in this study using an eigenvalue analysis. The spatial beam, plate, and solid elements considered in this investigation are suited for both structural and multibody system (MBS) applications. These spatial elements are based on geometry derived from the kinematic description of the absolute nodal coordinate formulation (ANCF). In order to allow for an accurate reference-configuration geometry description, the element shape functions are formulated using constant geometry coefficients defined using the position-vector gradients in the reference configuration. The change in the position-vector gradients is used to definemore »a velocity transformation matrix that leads to constant element inertia and stiffness matrices in the case of infinitesimal rotations. In contrast to conventional structural finite elements, the elements considered in this study can be used to describe the initial geometry with the same degree of accuracy as B-spline and nonuniform rational B-spline (NURBS) representations, widely used in the computer-aided design (CAD). An eigenvalue analysis is performed to evaluate the element convergence characteristics in the case of different geometries, including straight, tapered, and curved configurations. The frequencies obtained are compared with those obtained using a commercial FE software and analytical solutions. The stiffness matrix is obtained using both the general continuum mechanics (GCM) approach and the newly proposed strain split method (SSM) in order to investigate its effectiveness as a locking alleviation technique.« less
  6. The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the positionmore »gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shownthat continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials.« less