Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove the rigidity ofrectifiableboundaries with constantdistributionalmean curvature in the Brendle class of warped product manifolds (which includes important models in general relativity, like the de Sitter–Schwarzschild and Reissner–Nordstrom manifolds).As a corollary, we characterize limits of rectifiable boundaries whose mean curvatures converge, as distributions, to a constant.The latter result is new, and requires the full strength of distributional CMC-rigidity, even when one considers smooth boundaries whose mean curvature oscillations vanish in arbitrarily strong C^{k}-norms.Our method also establishes that rectifiable boundaries of sets of finite perimeter in the hyperbolic space with constant distributional mean curvature are finite unions of possibly mutually tangent geodesic spheres.more » « lessFree, publicly-accessible full text available October 2, 2026
-
Free, publicly-accessible full text available January 1, 2027
An official website of the United States government
