skip to main content


Search for: All records

Award ID contains: 1854399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Warm-sector heavy rainfall in southern China refers to the heavy rainfall that occurs within a weakly forced synoptic environment under the influence of monsoonal airflows. It is usually located near the southern coast and is characterized by poor predictability and a close relationship with coastal terrain. This study investigates the impacts of coastal terrain on the initiation, organization, and heavy rainfall potential of MCSs in warm-sector heavy rainfall over southern China using quasi-idealized WRF simulations and terrain-modification experiments. Typical warm-sector heavy rainfall events were selected to produce composite environments that forced the simulations. MCSs in these events all initiated in the early morning and developed into quasi-linear convective systems along the coast with a prominent back-building process. When the small coastal terrain is removed, the maximum 12-h rainfall accumulation decreases by ∼46%. The convection initiation is advanced ∼2 h with the help of orographic lifting associated with flow interaction with the coastal hills in the control experiment. Moreover, the coastal terrain weakens near-surface winds and thus decreases the deep-layer vertical wind shear component perpendicular to the coast and increases the component parallel to the coast; the coastal terrain also concentrates the moisture and instability over the coastal region by weakening the boundary layer jet. These modifications lead to faster upscale growth of convection and eventually a well-organized MCS. The coastal terrain is beneficial for back-building convection and thus persistent rainfall by providing orographic lifting for new cells on the western end of the MCS, and by facilitating a stronger and more stagnant cold pool, which stimulates new cells near its rear edge.

     
    more » « less
  2. Abstract

    Climatological features of the cloud variability on quasi‐2‐day (Q2D) and diurnal cycle (DC) timescales are investigated by utilizing the high‐resolution satellite infrared brightness temperature (IRBT) observations from January 1998 to December 2019. A distinct land‐sea contrast between the distributions of Q2D and DC signals is evident. Diurnally driven cloud activity mainly occurs over land and mountainous regions, and the Q2D timescale is more prominent over tropical ocean basins and land where organized convection is usually observed, for example, Congo and Amazon Rainforests, the United States and subtropical South America during warm seasons. The long‐term relationship between the Q2D variability and sea surface temperature (SST) shows that the clouds are more active on Q2D timescales over higher SST environments. The Q2D variability correlates well with both the Indian Ocean Dipole (IOD) and El Niño/Southern Oscillation (ENSO) from 1998 to 2019. The cloud variability associated with a range of convective available potential energy (CAPE) values is analyzed. The result over land shows that increased Q2D cloud variability emerges with higher CAPE, suggesting the coincidence of Q2D and organized convection, particularly given that this effect is strongest over regions with frequent mesoscale convective systems (MCSs) around the world. The cloud variability and the Q2D timescale analyses provide an alternative perspective to understand the global features of mesoscale convective systems. Overall, this study objectively examines the global variability of convective timescales related to the diurnal cycle and longer‐lived convective systems to provide a greater understanding of how the global convection population varies in space and time.

     
    more » « less
  3. null (Ed.)
    This study investigates the synoptic scale flows associated with extreme rainfall systems over the Asian-Australian monsoon region (90-160°E and 12°S-27°N). Based on statistics of the 17-year Precipitation Radar observations from Tropical Rainfall Measurement Mission, a total of 916 extreme systems with both the horizontal size and maximum rainfall intensity exceeding the 99.9th percentiles of the tropical rainfall systems are identified over this region. The synoptic wind pattern and rainfall distribution surrounding each system are classified into four major types: Vortex, Coastal, Coastal with Vortex, and None of above, with each accounting for 44 %, 29 %, 7 %, and 20 %, respectively. The vortex type occurs mainly over the off-equatorial areas in boreal summer. The coast-related types show significant seasonal variations in their occurrence, with high frequency in the Bay of Bengal in boreal summer and on the west side of Borneo and Sumatra in boreal winter. The None-of-the-above type occurs mostly over the open ocean, and in boreal winter these events are mainly associated with the cold surge events. The environment analysis shows that coast-related extremes in the warm season are found within the areas where high total water vapor and low-level vertical wind shear occur frequently. Despite the different synoptic environments, these extremes show a similar internal structure, with broad stratiform and wide convective core rain. Furthermore, the maximum rain rate locates mostly over convective area, near convective-stratiform boundary in the system. Our results highlight the critical role of the strength and direction of synoptic flows in the generation of extreme rainfall systems near coastal areas. With the enhancement of the low-level vertical wind shear and moisture by the synoptic flow, the coastal convection triggered diurnally has a higher chance to organize into mesoscale convective systems and hence a higher probability to produce extreme rainfall. 
    more » « less
  4. null (Ed.)
    This study investigates the synoptic-scale flows associated with extreme rainfall systems over the Asian–Australian monsoon region (90 – 160°E and 12°S – 27°N). On the basis of the statistics of the 17-year Precipitation Radar observations from Tropical Rainfall Measurement Mission, a total of 916 extreme systems, with both the horizontal size and maximum rainfall intensity exceeding the 99.9th percentiles of the tropical rainfall systems, are identified over this region. The synoptic wind pattern and rainfall distribution surrounding each system are classified into four major types: vortex, coastal, coastal with vortex, and none of above, with each accounting for 44, 29, 7, and 20 %, respectively. The vortex type occurs mainly over the off-equatorial areas in boreal summer. The coast-related types show significant seasonal variations in their occurrence, with high frequency in the Bay of Bengal in boreal summer and on the west side of Borneo and Sumatra in boreal winter. The none-of-the-above type occurs mostly over the open ocean and in boreal winter; these events are mainly associated with the cold surge events. The environment analysis shows that coast-related extremes in the warm season are found within the areas where high total water vapor and low-level vertical wind shear occur frequently. Despite the different synoptic environments, these extremes show a similar internal structure, with broad stratiform and wide convective core (WCC) rain. Furthermore, the maximum rain rate is located mostly over the convective area, near the convective–stratiform boundary in the system. Our results highlight the critical role of the strength and direction of synoptic flows in the generation of extreme rainfall systems near coastal areas. With the enhancement of the lowlevel vertical wind shear and moisture by the synoptic flow, the coastal convection triggered diurnally has a higher chance to organize into mesoscale convective systems and hence a higher probability to produce extreme rainfall. 
    more » « less