skip to main content


Search for: All records

Award ID contains: 1854831

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a novel co-learning paradigm for manifolds naturally admitting an action of a transformation group , motivated by recent developments on learning a manifold from attached fibre bundle structures. We utilize a representation theoretic mechanism that canonically associates multiple independent vector bundles over a common base manifold, which provides multiple views for the geometry of the underlying manifold. The consistency across these fibre bundles provide a common base for performing unsupervised manifold co-learning through the redundancy created artificially across irreducible representations of the transformation group. We demonstrate the efficacy of our proposed algorithmic paradigm through drastically improved robust nearest neighbor identification in cryo-electron microscopy image analysis and the clustering accuracy in community detection. 
    more » « less