skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1855018

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We apply a new approach for the δ13C analysis of single organic‐walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian–Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from −32 to −17‰, but average −25‰ across all samples and are consistently13C‐enriched compared to bulk sediments (δ13Cbulk) by ~0–10‰. We observe no difference between the δ13COWMof leiospheres (smooth‐walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13COWMand δ13Cbulkis in part due to a large δ13C gradient in the AB water column where OWM utilized relatively13C‐enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating13C‐depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13COWMand δ13Cbulkof 3‰ from shoreward to open‐ocean facies that may reflect the effect of13C‐enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single‐microfossil δ13Corganalyses of eukaryotes have been directly compared to bulk δ13Corgin the deep‐time fossil record. 
    more » « less