skip to main content


Search for: All records

Award ID contains: 1856050

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 30, 2024
  2. The hydrated electron is of interest to both theorists and experimentalists as a paradigm solution-phase quantum system. Although the bulk of the theoretical work studying the hydrated electron is based on mixed quantum/classical (MQC) methods, recent advances in computer power have allowed several attempts to study this object using ab initio methods. The difficulty with employing ab initio methods for this system is that even with relatively inexpensive quantum chemistry methods such as density functional theory (DFT), such calculations are still limited to at most a few tens of water molecules and only a few picoseconds duration, leaving open the question as to whether the calculations are converged with respect to either system size or dynamical fluctuations. Moreover, the ab initio simulations of the hydrated electron that have been published to date have provided only limited analysis. Most works calculate the electron’s vertical detachment energy, which can be compared to experiment, and occasionally the electronic absorption spectrum is also computed. Structural features, such as pair distribution functions, are rare in the literature, with the majority of the structural analysis being simple statements that the electron resides in a cavity, which are often based only on a small number of simulation snapshots. Importantly, there has been no ab initio work examining the temperature-dependent behavior of the hydrated electron, which has not been satisfactorily explained by MQC simulations. In this work, we attempt to remedy this situation by running DFT-based ab initio simulations of the hydrated electron as a function of both box size and temperature. We show that the calculated properties of the hydrated electron are not converged even with simulation sizes up to 128 water molecules and durations of several tens of picoseconds. The simulations show significant changes in the water coordination and solvation structure with box size. Our temperature-dependent simulations predict a red-shift of the absorption spectrum (computed using TD-DFT with an optimally tuned range-separated hybrid functional) with increasing temperature, but the magnitude of the predicted red-shift is larger than that observed experimentally, and the absolute position of the calculated spectra are off by over half an eV. The spectral red-shift at high temperatures is accompanied by both a partial loss of structure of the electron’s central cavity and an increased radius of gyration that pushes electron density onto and beyond the first solvation shell. Overall, although ab initio simulations can provide some insights into the temperature-dependent behavior of the hydrated electron, the simulation sizes and level of quantum chemistry theory that are currently accessible are inadequate for correctly describing the experimental properties of this fascinating object. 
    more » « less
  3. Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration. 
    more » « less