Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Global challenges such as soil degradation and water scarcity necessitate sustainable agricultural practices, particularly in regions where saline water is increasingly used for irrigation. This study investigates the effects of four compost treatments, including surface-applied mulch compost (MC), Johnson–Su biologically active compost incorporated into soil (JCI), mulch compost incorporated into soil (MCI), and no compost as control (NC), on soil fertility, microbial activity, and Capsicum annuum (chili pepper) growth. Greenhouse experiments were conducted using soil from two different sites (New Mexico State University’s (NMSU) agricultural research plots and agricultural field-testing site at the Brackish Groundwater National Desalination Research Facility (BGNDRF) in Alamogordo, New Mexico) and two irrigation water salinities (brackish at ~3000 µS/cm and agricultural at ~800 µS/cm). The Johnson–Su compost treatment demonstrated superior performance, due to its high soil organic matter (41.5%), nitrate (NO3−) content (82.5 mg/kg), and phosphorus availability (193.1 mg/kg). In the JCI-treated soils, microbial biomass increased by 40%, and total microbial carbon reached 64.69 g/m2 as compared to 64.7 g/m2 in the NC. Plant growth parameters, including chlorophyll content, root length, and wet biomass, improved substantially with JCI. For instance, JCI increased plant height by 20% and wet biomass by 30% compared to NC treatments. The JCI treatment also effectively mitigated soil salinity, reducing Na+ accumulation by 60% and Cl− by 70% while enhancing water retention and soil structure. Principal Component Analysis (PCA) revealed a distinct clustering of JCI treatments, demonstrating its ability to increase nutrient retention and minimize salinity stress. These results indicate that biologically active properties, such as fungi-rich compost, are critical to providing an effective, environmentally resilient approach for enhancing soil fertility and supporting sustainable crop production under brackish groundwater irrigation, particularly in regions facing freshwater scarcity.more » « lessFree, publicly-accessible full text available April 1, 2026
-
This study explores the effects of alternating current-induced electromagnetic field (EMF) on mitigating brackish water irrigation and soil salinization impacts. Greenhouse experiments were conducted to evaluate the effect of EMF on plant growth, soil properties, and leaching of ions under different conditions, including using brackish water and desalinated water for irrigation and soil compost incorporation. The experiment was performed with four types of irrigation water using soil columns representing field soil layers. EMF-treated brackish water maintained a sodium adsorption ratio of 2.7 by leaching Na+ from the soil. EMF-treated irrigation columns showed an increase in soil organic carbon by 7% over no EMF-treated columns. Compost treatment reduced the leaching of NO3− from the soil by more than 15% using EMF-treated irrigation water. EMF-treated brackish water and compost treatment enhanced plant growth by increasing wet weight by 63.6%, dry weight by 71.4%, plant height by 22.8%, and root length by 115.8% over no EMF and compost columns. EMF-treated agricultural water without compost also showed growth improvements. The findings suggest that EMF treatment, especially combined with compost, offers an effective, low-cost, and eco-friendly solution to mitigate soil salinization, promoting plant growth by improving nutrient availability and soil organic carbon.more » « less
-
Increasing soil salinity and degraded irrigation water quality are major challenges for agriculture. This study investigated the effects of irrigation water quality and incorporating compost (3% dry mass in soil) on minimizing soil salinization and promoting sustainable cropping systems. A greenhouse study used brackish water (electrical conductivity of 2010 µS/cm) and agricultural water (792 µS/cm) to irrigate Dundale pea and clay loam soil. Compost treatment enhanced soil water retention with soil moisture content above 0.280 m3/m3, increased plant carbon assimilation by ~30%, improved plant growth by >50%, and reduced NO3− leaching from the soil by 16% and 23.5% for agricultural and brackish water irrigation, respectively. Compared to no compost treatment, the compost-incorporated soil irrigated with brackish water showed the highest plant growth by increasing plant fresh weight by 64%, dry weight by 50%, root length by 121%, and plant height by 16%. Compost treatment reduced soil sodicity during brackish water irrigation by promoting the leaching of Cl− and Na+ from the soil. Compost treatment provides an environmentally sustainable approach to managing soil salinity, remediating the impact of brackish water irrigation, improving soil organic matter, enhancing the availability of water and nutrients to plants, and increasing plant growth and carbon sequestration potential.more » « less
An official website of the United States government
