skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1856329

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Limited research on the gross anatomy of the blood vessels has been conducted on hylobatids, or lesser apes, so far. Here, we present a detailed study of the arteries of siamangs (Symphalangus) and compare our findings with data compiled from our previous studies as well as from the literature about other hylobatids, greater apes, and humans. In particular, a three‐dimensional full‐body computed tomography data set of a siamang neonate was analyzed in detail for this study, with notable findings in the head and neck, thorax, upper limb, abdomen and pelvis, and lower limb. Of the 62 arteries that we studied in detail, a total of 20 arteries that have never been described in detail in hylobatids are reported in this study. Key similarities to other apes differing from humans include the existence of a humeral common circumflex trunk and the origination of the dorsalis pedis from the posterior tibial artery or saphenous artery instead of the anterior tibial artery. Similarities to humans differing from other apes include the separation of the lingual and facial arteries and the origination of the profunda brachii from the brachial artery instead of the axillary artery. Our research and broader comparisons, therefore, contribute to knowledge about the soft tissues of hylobatids, other apes, and primates in general and facilitate a better understanding of the anatomical evolution and key differences and similarities among these taxa. 
    more » « less
  2. null (Ed.)
  3. The study of evolutionary developmental pathologies (Evo-Devo-Path) is an emergent field that relies on comparative anatomy to inform our understanding of the development and evolution of normal and abnormal structures in different groups of organisms, with a special focus on humans. Previous research has demonstrated that some muscles that have been lost in our ancestors well before the evolution of anatomically modern humans occasionally appear as variations in adults within the normal human population or as anomalies in individuals with congenital malformations. Here, we provide the first review of fourteen atavistic muscles/groups of muscles that are only present as variations or anomalies in modern humans but are commonly present in other primate species. Muscles within the head and neck and pectoral girdle and upper limb region include platysma cervicale, mandibulo-auricularis, rhomboideus occipitalis, levator claviculae, dorsoepitrochlearis, panniculus carnosus, epitrochleoanconeus, and contrahentes digitorum manus. Within the lower limb, they include scansorius, ischiofemoralis, contrahentes digitorum pedis, opponens hallucis, abductor metatarsi quinti, and opponens digiti minimi. For each muscle, we describe their synonyms, comparative anatomy among primates, embryonic development, presentation and prevalence as a variation, and presentation and prevalence as an anomaly. Research on the embryonic origins of six of these muscles has demonstrated that they appear early on in normal human development but usually disappear before birth. Among the eight muscles in the upper half of the body, mandibulo-auricularis is, to our knowledge, present in humans only as a variation, while the other seven muscles can be present as either a variation or an anomaly. All six muscles of the lower limb are present only as variations, and to our knowledge have not been described in anomalous individuals. Interestingly, although these muscles conform to most definitions of what constitutes an atavism—i.e., they were lost in our adult ancestors and now appear in some adult humans—some of them are seemingly present in more than 2% of the normal population. Therefore, they might actually constitute polymorphisms rather than variations. The research summarized here therefore emphasizes the need of future studies of the evolution, development, and prevalence of soft tissue variations and anomalies in humans, not only for the understanding of our evolutionary history but also of our phenotype and pathologies. 
    more » « less