Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Symmetry-breaking in coupled, identical, fast–slow systems produces a rich, dramatic variety of dynamical behavior—such as amplitudes and frequencies differing by an order of magnitude or more and qualitatively different rhythms between oscillators, corresponding to different functional states. We present a novel method for analyzing these systems. It identifies the key geometric structures responsible for this new symmetry-breaking, and it shows that many different types of symmetry-breaking rhythms arise robustly. We find symmetry-breaking rhythms in which one oscillator exhibits small-amplitude oscillations, while the other exhibits phase-shifted small-amplitude oscillations, large-amplitude oscillations, mixed-mode oscillations, or even undergoes an explosion of limit cycle canards. Two prototypical fast–slow systems illustrate the method: the van der Pol equation that describes electrical circuits and the Lengyel–Epstein model of chemical oscillators.more » « less
-
We study how Turing pattern formation on a growing domain is affected by discrete domain discontinuities. We use the Lengyel–Epstein reaction–diffusion model to numerically simulate Turing pattern formation on radially expanding circular domains containing a variety of obstruction geometries, including obstructions spanning the length of the domain, such as walls and slits, and local obstructions, such as small blocks. The pattern formation is significantly affected by the obstructions, leading to novel pattern morphologies. We show that obstructions can induce growth mode switching and disrupt local pattern formation and that these effects depend on the shape and placement of the objects as well as the domain growth rate. This work provides a customizable framework to perform numerical simulations on different types of obstructions and other heterogeneous domains, which may guide future numerical and experimental studies. These results may also provide new insights into biological pattern growth and formation, especially in non-idealized domains containing noise or discontinuities.more » « less
-
In 1952, Alan Turing proposed a theory showing how morphogenesis could occur from a simple two morphogen reaction–diffusion system [Turing, A. M. (1952) Phil. Trans. R. Soc. Lond. A 237 , 37–72. (doi:10.1098/rstb.1952.0012)]. While the model is simple, it has found diverse applications in fields such as biology, ecology, behavioural science, mathematics and chemistry. Chemistry in particular has made significant contributions to the study of Turing-type morphogenesis, providing multiple reproducible experimental methods to both predict and study new behaviours and dynamics generated in reaction–diffusion systems. In this review, we highlight the historical role chemistry has played in the study of the Turing mechanism, summarize the numerous insights chemical systems have yielded into both the dynamics and the morphological behaviour of Turing patterns, and suggest future directions for chemical studies into Turing-type morphogenesis. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.more » « less
An official website of the United States government
