- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Chanda, Baron (3)
-
Goldsmith, Randall H. (3)
-
Goldsmith, Randall H (2)
-
Smith, Mackinsey A. (2)
-
White, David S. (2)
-
Aspuru-Guzik, Alán (1)
-
Cai, Shuangfei (1)
-
Cavell, Andrew C. (1)
-
Chowdhury, Sandipan (1)
-
Cronin, Leroy (1)
-
Czerwinski, Rachel (1)
-
Ding, Jianwei (1)
-
Forman, Christopher (1)
-
Friederich, Pascal (1)
-
Gao, Ning (1)
-
Gianneschi, Nathan (1)
-
Goldschen-Ohm, Marcel P (1)
-
Guo, Si Yue (1)
-
He, Jun (1)
-
Hickman, Riley J. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
White, David S.; Smith, Mackinsey A.; Chanda, Baron; Goldsmith, Randall H. (, ACS Measurement Science Au)
-
Ding, Jianwei; Wang, Fengmei; Pan, Feng; Yu, Peng; Gao, Ning; Goldsmith, Randall H; Cai, Shuangfei; Yang, Rong; He, Jun (, ACS Catalysis)
-
White, David S.; Chowdhury, Sandipan; Idikuda, Vinay; Zhang, Ruohan; Retterer, Scott T.; Goldsmith, Randall H.; Chanda, Baron (, Nature)
-
White, David S; Goldschen-Ohm, Marcel P; Goldsmith, Randall H; Chanda, Baron (, eLife)Single-molecule approaches provide enormous insight into the dynamics of biomolecules, but adequately sampling distributions of states and events often requires extensive sampling. Although emerging experimental techniques can generate such large datasets, existing analysis tools are not suitable to process the large volume of data obtained in high-throughput paradigms. Here, we present a new analysis platform (DISC) that accelerates unsupervised analysis of single-molecule trajectories. By merging model-free statistical learning with the Viterbi algorithm, DISC idealizes single-molecule trajectories up to three orders of magnitude faster with improved accuracy compared to other commonly used algorithms. Further, we demonstrate the utility of DISC algorithm to probe cooperativity between multiple binding events in the cyclic nucleotide binding domains of HCN pacemaker channel. Given the flexible and efficient nature of DISC, we anticipate it will be a powerful tool for unsupervised processing of high-throughput data across a range of single-molecule experiments.more » « less
An official website of the United States government
