skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1856683

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We introduce a free probabilistic quantity called free Stein irregularity, which is defined in terms of free Stein discrepancies. It turns out that this quantity is related via a simple formula to the Murray–von Neumann dimension of the closure of the domain of the adjoint of the non-commutative Jacobian associated to Voiculescu’s free difference quotients. We call this dimension the free Stein dimension, and show that it is a ∗-algebra invariant. We relate these quantities to the free Fisher information, the non-microstates free entropy, and the non-microstates free entropy dimension. In the one-variable case, we show that the free Stein dimension agrees with the free entropy dimension, and in the multivariable case compute it in a number of examples. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract This paper gives a free entropy theoretic perspective on amenable absorption results for free products of tracial von Neumann algebras. In particular, we give the 1st free entropy proof of Popa’s famous result that the generator MASA in a free group factor is maximal amenable, and we partially recover Houdayer’s results on amenable absorption and Gamma stability. Moreover, we give a unified approach to all these results using $$1$$-bounded entropy. We show that if $${\mathcal{M}} = {\mathcal{P}} * {\mathcal{Q}}$$, then $${\mathcal{P}}$$ absorbs any subalgebra of $${\mathcal{M}}$$ that intersects it diffusely and that has $$1$$-bounded entropy zero (which includes amenable and property Gamma algebras as well as many others). In fact, for a subalgebra $${\mathcal{P}} \leq{\mathcal{M}}$$ to have this absorption property, it suffices for $${\mathcal{M}}$$ to admit random matrix models that have exponential concentration of measure and that “simulate” the conditional expectation onto $${\mathcal{P}}$$. 
    more » « less