skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1856684

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorescence-encoded infrared (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-molecule sensitivity in solution without near-field enhancement. This work explores the practical experimental factors that are required for successful FEIR measurements in both the single-molecule and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between molecules, we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-molecule experiments. 
    more » « less
  2. null (Ed.)