skip to main content


Search for: All records

Award ID contains: 1900093

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Condensation of hundreds of mega-base-pair-long human chromosomes in a small nuclear volume is a spectacular biological phenomenon. This process is driven by the formation of chromosome loops. The ATP consuming motor, condensin, interacts with chromatin segments to actively extrude loops. Motivated by real-time imaging of loop extrusion (LE), we created an analytically solvable model, predicting the LE velocity and step size distribution as a function of external load. The theory fits the available experimental data quantitatively, and suggests that condensin must undergo a large conformational change, induced by ATP binding, bringing distant parts of the motor to proximity. Simulations using a simple model confirm that the motor transitions between an open and a closed state in order to extrude loops by a scrunching mechanism, similar to that proposed in DNA bubble formation during bacterial transcription. Changes in the orientation of the motor domains are transmitted over ~50 nm, connecting the motor head and the hinge, thus providing an allosteric basis for LE.

     
    more » « less
  2. Low-complexity nucleotide repeat sequences, which are implicated in several neurological disorders, undergo liquid–liquid phase separation (LLPS) provided the number of repeat units, n , exceeds a critical value. Here, we establish a link between the folding landscapes of the monomers of trinucleotide repeats and their propensity to self-associate. Simulations using a coarse-grained Self-Organized Polymer (SOP) model for (CAG) n repeats in monovalent salt solutions reproduce experimentally measured melting temperatures, which are available only for small n . By extending the simulations to large n , we show that the free-energy gap, ΔG S , between the ground state (GS) and slipped hairpin (SH) states is a predictor of aggregation propensity. The GS for even n is a perfect hairpin (PH), whereas it is a SH when n is odd. The value of ΔG S (zero for odd n ) is larger for even n than for odd n . As a result, the rate of dimer formation is slower in (CAG) 30 relative to (CAG) 31 , thus linking ΔG S to RNA–RNA association. The yield of the dimer decreases dramatically, compared to the wild type, in mutant sequences in which the population of the SH decreases substantially. Association between RNA chains is preceded by a transition to the SH even if the GS is a PH. The finding that the excitation spectrum—which depends on the exact sequence, n , and ionic conditions—is a predictor of self-association should also hold for other RNAs (mRNA for example) that undergo LLPS. 
    more » « less
    Free, publicly-accessible full text available June 13, 2024
  3. Amyloid beta monomers adopt transient fibrillar order following Ostwald's rule of stages. 
    more » « less
  4. Molecular motors, kinesin and myosin, are dimeric consisting of two linked identical monomeric globular proteins. Fueled by the free energy generated by ATP hydrolysis, they walk on polar tracks (microtubule or filamentous actin) processively, which means that only one head detaches and executes a mechanical step while the other stays bound to the track. One motor head must regulate the chemical state of the other, referred to as “gating”, a concept that is still not fully understood. Inspired by experiments, showing that only a fraction of the energy from ATP hydrolysis is used to advance the kinesin motors against load, we demonstrate that the rest of the energy is associated with chemical transitions in the two heads. The coordinated chemical transitions involve communication between the two heads - a feature that characterizes gating. We develop a general framework, based on information theory and stochastic thermodynamics, and establish that gating could be quantified in terms of information flow between the motor heads. Applications to kinesin-1 and Myosin V show that information flow, with positive cooperativity, at external resistive loads less than a critical value, F c . When force exceeds F c , effective information flow ceases. Interestingly, F c , which is independent of the input energy generated through ATP hydrolysis, coincides with the force at which the probability of backward steps starts to increase. Our findings suggest that transport efficiency is optimal only at forces less than F c , which implies that these motors must operate at low loads under in vivo conditions. 
    more » « less