skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900124

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Henry Charlier (Ed.)
    This paper reports an approach that developed instrumental parameters with two different GC-MS instruments. Data from the two devices were combined with principal component analysis (PCA) to analyze genuinely and ignited ignitable liquid residues (ILR). We simulate the field samples by burning seasoned pinewood soaked with each ignitable liquid (IL). Enough unburnt components from an IL remained on the burnt wood. These components were enough to reveal the chromatographic fingerprint of an IL. Most importantly, the chromatographic profile from a pure IL and IL poured onto a wooden substrate and ignited was identical. The chromatographic profiles reported from each instrument for each IL were reproducible to within 3% RSD. The MS data from both GC-MS instruments showed similar m/z peaks from all ILs, indicating similar hydrocarbon(s) and or fragmentation cluster patterns in the ILs studied ingredients. The PCA data showed characteristic differences giving rise to the separation between incendiaries, albeit some were overshadowed by clustering. In some cases, ILs that showed similar components in their mass spectra profile grouped as a class on the PCA display. We demonstrate an approach using direct headspace injection to individualize ILs recovered from crime scenes. Direct headspace injection and GC-MS combined with PCA are shown as promising facile methods for the qualitative determination of specific ILs in real-world arson samples. Initially, our project started as an undergraduate instrumental analysis guided-inquiry (GI) project. Such labs have been reported to enhance student learning and improve students' critical and problem-solving abilities. We plan to incorporate this approach in both an undergraduate instrumental analysis class and a graduate-level analytical chemistry class. 
    more » « less