skip to main content


Search for: All records

Award ID contains: 1900160

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalized Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared with other models. This article is part of the theme issue ‘Dynamic and transient processes in warm dense matter’. 
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  2. Free, publicly-accessible full text available July 20, 2024
  3. We introduce a semi-classical approximation for calculating generalized multi-time correlation functions based on Matsubara dynamics, a classical dynamics approach that conserves the quantum Boltzmann distribution. This method is exact for the zero time and harmonic limits and reduces to classical dynamics when only one Matsubara mode is considered (i.e., the centroid). Generalized multi-time correlation functions can be expressed as canonical phase-space integrals, involving classically evolved observables coupled through Poisson brackets in a smooth Matsubara space. Numerical tests on a simple potential show that the Matsubara approximation exhibits better agreement with exact results than classical dynamics, providing a bridge between the purely quantum and classical descriptions of multi-time correlation functions. Despite the phase problem that prevents practical applications of Matsubara dynamics, the reported work provides a benchmark theory for the future development of quantum-Boltzmann-preserving semi-classical approximations for studies of chemical dynamics in condensed phase systems. 
    more » « less
    Free, publicly-accessible full text available May 14, 2024
  4. Free, publicly-accessible full text available May 4, 2024
  5. An exact representation of quantum mechanics using the language of phase-space variables provides a natural starting point to introduce and develop semiclassical approximations for the calculation of time correlation functions. Here, we introduce an exact path-integral formalism for calculations of multi-time quantum correlation functions as canonical averages over ring-polymer dynamics in imaginary time. The formulation provides a general formalism that exploits the symmetry of path integrals with respect to permutations in imaginary time, expressing correlations as products of imaginary-time-translation-invariant phase-space functions coupled through Poisson bracket operators. The method naturally recovers the classical limit of multi-time correlation functions and provides an interpretation of quantum dynamics in terms of “interfering trajectories” of the ring-polymer in phase space. The introduced phase-space formulation provides a rigorous framework for the future development of quantum dynamics methods that exploit the invariance of imaginary time path integrals to cyclic permutations.

     
    more » « less