skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900170

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electromagnetically induced slow-light medium is a promising system for quantum memory devices, but controlling its noise level remains a major challenge to overcome. This work considers the simplest model for such medium, comprised of three-level Λ-systems interacting with bosonic bath, and provides a new fundamental trade-off relation in light–matter interaction between the group velocity of light and the Fano factor of photon current due to radiative transitions. Considering the steady state limits of a newly derived Lindblad-type equation, we find that the Fano factor of the photon current maximizes to 3 at the minimal group velocity of light, which holds true universally regardless of detailed values of parameters characterizing the medium. 
    more » « less
  2. Fermi’s golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation. However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined. Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate the utility and implications of new rate expressions. 
    more » « less
  3. Polaron-transformed quantum master equation (PQME) offers a unified framework to describe the dynamics of quantum systems in both limits of weak and strong couplings to environmental degrees of freedom. Thus, the PQME serves as an efficient method to describe charge and exciton transfer/transport dynamics for a broad range of parameters in condensed or complex environments. However, in some cases, the polaron transformation (PT) being employed in the formulation invokes an over-relaxation of slow modes and results in premature suppression of important coherence terms. A formal framework to address this issue is developed in the present work by employing a partial PT that has smaller weights for low frequency bath modes. It is shown here that a closed form expression of a second order time-local PQME including all the inhomogeneous terms can be derived for a general form of partial PT, although more complicated than that for the full PT. All the expressions needed for numerical calculation are derived in detail. Applications to a model of a two-level system coupled to a bath of harmonic oscillators, with test calculations focused on those due to homogeneous relaxation terms, demonstrate the feasibility and the utility of the present approach. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)