- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guria, Sankha Narayan (2)
-
Foster, Jeffrey S. (1)
-
Guarnieri, Marco (1)
-
Parker, James (1)
-
Van Horn, David (1)
-
Vazou, Niki (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-interference is a popular way to enforce confidentiality of sensitive data. However, declassification of sensitive information is often needed in realistic applications but breaks non-interference. We present ANOSY, an approximate knowledge synthesizer for quantitative declassification policies. ANOSY uses refinement types to automatically construct machine checked over- and under-approximations of attacker knowledge for boolean queries on multi-integer secrets. It also provides an AnosyT monad to track the attacker knowledge over multiple declassification queries and checks for violations against user-specified policies in information flow control applications. We implement a prototype of ANOSY and show that it is precise and permissive: up to 14 declassification queries are permitted before a policy violation occurs using the powerset of intervals domain.more » « less
-
Guria, Sankha Narayan; Foster, Jeffrey S.; Van Horn, David (, Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation)In recent years, researchers have explored component-based synthesis, which aims to automatically construct programs that operate by composing calls to existing APIs. However, prior work has not considered efficient synthesis of methods with side effects, e.g., web app methods that update a database. In this paper, we introduce RbSyn, a novel type- and effect-guided synthesis tool for Ruby. An RbSyn synthesis goal is specified as the type for the target method and a series of test cases it must pass. RbSyn works by recursively generating well-typed candidate method bodies whose write effects match the read effects of the test case assertions. After finding a set of candidates that separately satisfy each test, RbSyn synthesizes a solution that branches to execute the correct candidate code under the appropriate conditions. We formalize RbSyn on a core, object-oriented language λsyn and describe how the key ideas of the model are scaled-up in our implementation for Ruby. We evaluated RbSyn on 19 benchmarks, 12 of which come from popular, open-source Ruby apps. We found that RbSyn synthesizes correct solutions for all benchmarks, with 15 benchmarks synthesizing in under 9 seconds, while the slowest benchmark takes 83 seconds. Using observed reads to guide synthesize is effective: using type-guidance alone times out on 10 of 12 app benchmarks. We also found that using less precise effect annotations leads to worse synthesis performance. In summary, we believe type- and effect-guided synthesis is an important step forward in synthesis of effectful methods from test cases.more » « less
An official website of the United States government
