Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bulterman_Dick; Kankanhalli_Mohan; Muehlhaueser_Max; Persia_Fabio; Sheu_Philip; Tsai_Jeffrey (Ed.)The emergence of 360-video streaming systems has brought about new possibilities for immersive video experiences while requiring significantly higher bandwidth than traditional 2D video streaming. Viewport prediction is used to address this problem, but interesting storylines outside the viewport are ignored. To address this limitation, we present SAVG360, a novel viewport guidance system that utilizes global content information available on the server side to enhance streaming with the best saliency-captured storyline of 360-videos. The saliency analysis is performed offline on the media server with powerful GPU, and the saliency-aware guidance information is encoded and shared with clients through the Saliency-aware Guidance Descriptor. This enables the system to proactively guide users to switch between storylines of the video and allow users to follow or break guided storylines through a novel user interface. Additionally, we present a viewing mode prediction algorithms to enhance video delivery in SAVG360. Evaluation of user viewport traces in 360-videos demonstrate that SAVG360 outperforms existing tiled streaming solutions in terms of overall viewport prediction accuracy and the ability to stream high-quality 360 videos under bandwidth constraints. Furthermore, a user study highlights the advantages of our proactive guidance approach over predicting and streaming of where users look.more » « less
-
360-degree video is becoming an integral part of our content consumption through both video on demand and live broadcast services. However, live broadcast is still challenging due to the huge network bandwidth cost if all 360-degree views are delivered to a large viewer population over diverse networks. In this paper, we present 360BroadView, a viewer management approach to viewport prediction in 360-degree video live broadcast. We make some highbandwidth network viewers be leading viewers to help the others (lagging viewers) predict viewports during 360-degree video viewing and save bandwidth. Our viewer management maintains the leading viewer population despite viewer churns during live broadcast, so that the system keeps functioning properly. Our evaluation shows that 360BroadView maintains the leading viewer population at a minimal yet necessary level for 97 percent of the time.more » « less
-
360-degree video based virtual tours are becoming more and more popular due to travel costs and restrictions. Existing solutions leverage teleport, 3D modeling or image morphing, but none of them offers satisfactory immersion and scalability. In this paper, we propose a morphing based ultra-sparse 360-degree camera virtual tourism solution. It uses a novel bus tour mode to improve immersion; besides, it uses a series of strategies to improve feature matching such that morphing works well for ultra-sparse (15 m apart) cameras and the system can be deployed on a large scale. The experimental results show that our work results in remarkably better feature matching and synthesized views.more » « less
-
Immersive virtual tours based on 360-degree cameras, showing famous outdoor scenery, are becoming more and more desirable due to travel costs, pandemics and other constraints. To feel immersive, a user must receive the view accurately corresponding to her position and orientation in the virtual space when she moves inside, and this requires cameras’ orientations to be known. Outdoor tour contexts have numerous, ultra-sparse cameras deployed across a wide area, making camera pose estimation challenging. As a result, pose estimation techniques like SLAM, which require mobile or dense cameras, are not applicable. In this paper we present a novel strategy called 360ViewPET, which automatically estimates the relative poses of two stationary, ultra-sparse (15 meters apart) 360-degree cameras using one equirectangular image taken by each camera. Our experiments show that it achieves accurate pose estimation, with a mean error as low as 0.9 degreemore » « less
-
In recent years, streamed 360° videos have gained popularity within Virtual Reality (VR) and Augmented Reality (AR) applications. However, they are of much higher resolutions than 2D videos, causing greater bandwidth consumption when streamed. This increased bandwidth utilization puts tremendous strain on the network capacity of the cloud providers streaming these videos. In this paper, we introduce L3BOU, a novel, three-tier distributed software framework that reduces cloud-edge bandwidth in the backhaul network and lowers average end-to-end latency for 360° video streaming applications. The L3BOU framework achieves low bandwidth and low latency by leveraging edge-based, optimized upscaling techniques. L3BOU accomplishes this by utilizing down-scaled MPEG-DASH-encoded 360° video data, known as Ultra Low Resolution (ULR) data, that the L3BOU edge applies distributed super-resolution (SR) techniques on, providing a high quality video to the client. L3BOU is able to reduce the cloud-edge backhaul bandwidth by up to a factor of 24, and the optimized super-resolution multi-processing of ULR data provides a 10-fold latency decrease in super resolution upscaling at the edge.more » « less
-
After the emergence of video streaming services, more creative and diverse multimedia content has become available, and now the capability of streaming 360-degree videos will open a new era of multimedia experiences. However, streaming these videos requires larger bandwidth and less latency than what is found in conventional video streaming systems. Rate adaptation of tiled videos and view prediction techniques are used to solve this problem. In this paper, we introduce the Navigation Graph, which models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to perform the rate adaptation of tiled media associated with the view prediction. The Navigation Graph allows clients to perform view prediction more easily by sharing the viewing model in the same way in which media description information is shared in DASH. It is also useful for encoding the trajectory information in the media description file, which could also allow for more efficient navigation of 360-degree videos. This paper provides information about the creation of the Navigation Graph and its uses. The performance evaluation shows that the Navigation Graph based view prediction and rate adaptation outperform other existing tiled media streaming solutions. Navigation Graph is not limited to 360-degree video streaming applications, but it can also be applied to other tiled media streaming systems, such as volumetric media streaming for augmented reality applications.more » « less