skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900924

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2026
  2. Free, publicly-accessible full text available October 13, 2026
  3. Free, publicly-accessible full text available May 30, 2026
  4. Many synthesis and verification problems can be reduced to determining the truth of formulas over the real numbers. These formulas often involve constraints with integrals in them. To this end, we extend the framework of δ-decision procedures with techniques for handling integrals of user-specified real functions. We implement this decision procedure in the tool ∫dReal, which is built on top of dReal. We evaluate ∫dReal on a suite of problems that include formulas verifying the fairness of algorithms and the privacy and the utility of privacy mechanisms and formulas that synthesize parameters for the desired utility of privacy mechanisms. The performance of the tool in these experiments demonstrates the effectiveness of ∫dReal. 
    more » « less
  5. Security properties of real-time systems often involve reasoning about hyper-properties, as opposed to properties of single executions or trees of executions. These hyper-properties need to additionally be expressive enough to reason about real-time constraints. Examples of such properties include information flow, side channel attacks and service-level agreements. In this paper we study computational problems related to a branching-time, hyper-property extension of metric temporal logic (MTL) that we call HCMTL*. We consider both the interval-based and point-based semantics of this logic. The verification problem that we consider is to determine if a given HCMTL* formula ℑ is true in a system represented by a timed automaton. We show that this problem is undecidable. We then show that the verification problem is decidable if we consider executions upto a fixed time horizon T. Our decidability result relies on reducing the verification problem to the truth of an MSO formula over reals with a bounded time interval. 
    more » « less
  6. We consider the problem of checking the differential privacy of online randomized algorithms that process a stream of inputs and produce outputs corresponding to each input. This paper generalizes an automaton model called DiP automata [10] to describe such algorithms by allowing multiple real-valued storage variables. A DiP automaton is a parametric automaton whose behavior depends on the privacy budget ∈. An automaton A will be said to be differentially private if, for some D, the automaton is D∈-differentially private for all values of ∈ > 0. We identify a precise characterization of the class of all differentially private DiP automata. We show that the problem of determining if a given DiP automaton belongs to this class is PSPACE-complete. Our PSPACE algorithm also computes a value for D when the given automaton is differentially private. The algorithm has been implemented, and experiments demonstrating its effectiveness are presented. 
    more » « less
  7. null (Ed.)
  8. Differential privacy is a mathematical framework for developing statistical computations with provable guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not have a generally accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to algorithm and are not instantiations of a general definition. We identify program discontinuity as a common theme in existingad hocdefinitions and introduce an alternative notion of accuracy parametrized by, what we call, — the of an inputxw.r.t.  a deterministic computationfand a distanced, is the minimal distanced(x,y) over allysuch thatf(y)≠f(x). We show that our notion of accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then, we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally, or assuming Schanuel’s conjecture). We implement our decision procedure and experimentally evaluate the effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms from the literature. 
    more » « less
  9. null (Ed.)
    Automated reasoning tools for security protocols model protocols as non-deterministic processes that communicate through a Dolev-Yao attacker. There are, however, a large class of protocols whose correctness relies on an explicit ability to model and reason about randomness. Although such protocols lie at the heart of many widely adopted systems for anonymous communication, they have so-far eluded automated verification techniques. We propose an algorithm for reasoning about safety properties for randomized protocols. The algorithm is implemented as an extension of Stochastic Protocol ANalyzer (Span), the mechanized tool that reasons about the indistinguishability properties of randomized protocols. Using Span, we conduct the first automated verification on several randomized security protocols and uncover previously unknown design weaknesses in several of the protocols we analyzed. 
    more » « less
  10. Termination checking is a classic static analysis, and, within this focus, there are type-based approaches that formalize termination analysis as type systems (i.e., so that all well-typed programs terminate). But there are situations where a stronger termination property (which we call strongly-bounded termination) must be determined and, accordingly, we explore this property via a variant of the simply-typed λ-calculus called the bounded-time λ-calculus (BTC). This paper presents the BTC and its semantics and metatheory through a Coq formalization. Important examples (e.g., hardware synthesis from functional languages and detection of covert timing channels) motivating strongly-bounded termination and BTC are described as well. 
    more » « less