Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.more » « lessFree, publicly-accessible full text available December 3, 2025
-
We generalize the notions of asymptotic dimension and coarse embeddings from metric spaces to quantum metric spaces in the sense of Kuperberg and Weaver [A von Neumann algebra approach to quantum metrics, Mem. Am. Math. Soc. 215(1010) (2012) 1–80]. We show that quantum asymptotic dimension behaves well with respect to metric quotients and direct sums, and is preserved under quantum coarse embeddings. Moreover, we prove that a quantum metric space that equi-coarsely contains a sequence of expanders must have infinite asymptotic dimension. This is done by proving a quantum version of a vertex-isoperimetric inequality for expanders, based upon a previously known edge-isoperimetric one from [K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf and F. Verstraete, The [Formula: see text]-divergence and mixing times of quantum Markov processes, J. Math. Phys. 51(12) (2010) 122201].more » « less
An official website of the United States government
