Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper introduces Verdict, a transparency dictionary, where an untrusted service maintains a label-value map that clients can query and update (foundational infrastructure for end-to-end encryption and other applications). To prevent unauthorized modifications to the dictionary, for example, by a malicious or a compromised service provider, Verdict produces publicly verifiable cryptographic proofs that it correctly executes both reads and authorized updates. A key advance over prior work is that Verdict produces efficiently-verifiable proofs while incurring modest proving overheads. Verdict accomplishes this by composing indexed Merkle trees (a new SNARK-friendly data structure) with Phalanx (a new SNARK that supports amortized constant-sized proofs and leverages particular workload characteristics to speed up the prover). Our experimental evaluation demonstrates that Verdict scales to dictionaries with millions of labels while imposing modest overheads on the service and clients.more » « less
- 
            null (Ed.)Many recent proposals to increase the resilience of the Web PKI against misbehaving CAs face significant obstacles to deployment. These hurdles include (1) the requirement of drastic changes to the existing PKI players and their interactions, (2) the lack of signaling mechanisms to protect against downgrade attacks, (3) the lack of an incremental deployment strategy, and (4) the use of inflexible mechanisms that hinder recovery from misconfiguration or from the loss or compromise of private keys. As a result, few of these proposals have seen widespread deployment, despite their promise of a more secure Web PKI. To address these roadblocks, we propose Certificates with Automated Policies and Signaling (CAPS), a system that leverages the infrastructure of the existing Web PKI to overcome the aforementioned hurdles. CAPS offers a seamless and secure transition away from today’s insecure Web PKI and towards present and future proposals to improve the Web PKI. Crucially, with CAPS, domains can take simple steps to protect themselves from MITM attacks in the presence of one or more misbehaving CAs, and yet the interaction between domains and CAs remains fundamentally the same. We implement CAPS and show that it adds at most 5% to connection establishment latency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available