- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lindsey, Kathryn (3)
-
Bray, Harrison (1)
-
Davis, Diana (1)
-
Grigsby, J. Elisenda (1)
-
Koch, Sarah (1)
-
LINDSEY, KATHRYN (1)
-
Sharland, Thomas (1)
-
WU, CHENXI (1)
-
Wu, Chenxi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $$\mathbb {C}\times \mathbb {R}$$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $$\mathbb {C}$$ and $$\mathbb {R}$$ .more » « less
-
Koch, Sarah; Lindsey, Kathryn; Sharland, Thomas (, International Mathematics Research Notices)Abstract Let $$f$$ be a degree $$d$$ bicritical rational map with critical point set $$\mathcal{C}_f$$ and critical value set $$\mathcal{V}_f$$. Using the group $$\textrm{Deck}(f^k)$$ of deck transformations of $f^k$, we show that if $$g$$ is a bicritical rational map that shares an iterate with $$f$$, then $$\mathcal{C}_f = \mathcal{C}_g$$ and $$\mathcal{V}_f = \mathcal{V}_g$$. Using this, we show that if two bicritical rational maps of even degree $$d$$ share an iterate, then they share a second iterate, and both maps belong to the symmetry locus of degree $$d$$ bicritical rational maps.more » « less
-
Grigsby, J. Elisenda; Lindsey, Kathryn (, SIAM Journal on Applied Algebra and Geometry)
-
Bray, Harrison; Davis, Diana; Lindsey, Kathryn; Wu, Chenxi (, Advances in Mathematics)
An official website of the United States government
