skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1901247

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $$\mathbb {C}\times \mathbb {R}$$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $$\mathbb {C}$$ and $$\mathbb {R}$$ . 
    more » « less
  2. Abstract Let $$f$$ be a degree $$d$$ bicritical rational map with critical point set $$\mathcal{C}_f$$ and critical value set $$\mathcal{V}_f$$. Using the group $$\textrm{Deck}(f^k)$$ of deck transformations of $f^k$, we show that if $$g$$ is a bicritical rational map that shares an iterate with $$f$$, then $$\mathcal{C}_f = \mathcal{C}_g$$ and $$\mathcal{V}_f = \mathcal{V}_g$$. Using this, we show that if two bicritical rational maps of even degree $$d$$ share an iterate, then they share a second iterate, and both maps belong to the symmetry locus of degree $$d$$ bicritical rational maps. 
    more » « less