skip to main content


Search for: All records

Award ID contains: 1901517

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Internet Route Registry (IRR) and Resource Public Key Infrastructure (RPKI) both emerged as different solutions to improve routing security in the Border Gateway Protocol (BGP) by allowing networks to register information and develop route filters based on information other networks have registered. RPKI is a crypto system, with associated complexity and policy challenges; it has seen substantial but slowing adoption. IRR databases often contain inaccurate records due to lack of validation standards. Given the widespread use of IRR for routing security purposes, this inaccuracy merits further study. We study IRR accuracy by quantifying the consistency between IRR and RPKI records, analyze the causes of inconsistency, and examine which ASes are contributing correct IRR information. In October 2021, we found ROAs for around 20% of RADB IRR records, and a consistency of 38% and 60% in v4 and v6. For RIPE IRR, we found ROAs for 47% records and a consistency of 73% and 82% in v4 and v6. For APNIC IRR, we found ROAs for 76% records and a high consistency of 98% and 99% in v4 and v6. For AFRINIC IRR, we found ROAs for only 4% records and a consistency of 93% and 97% in v4 and v6. 
    more » « less
  2. The Border Gateway Protocol (BGP) is the protocol that networks use to exchange (announce) routing information across the Internet. Unfortunately, BGP has no mechanism to prevent unauthorized announcement of network addresses, also known as prefix hijacks. Since the 1990s, the primary means of protecting against unauthorized origin announcements has been the use of routing information databases, so that networks can verify prefix origin information they receive from their neighbors in BGP messages. In the 1990s, operators deployed databases now collectively known as the Internet Routing Registry (IRR), which depend on voluntary (although sometimes contractually required) contribution of routing information without strict (or sometimes any) validation. Coverage, accuracy, and use of these databases remains inconsistent across ISPs and over time. In 2012, after years of debate over approaches to improving routing security, the operator community deployed an alternative known as the Resource Public Key Infrastructure (RPKI). The RPKI includes cryptographic attestation of records, including expiration dates, with each Regional Internet Registry (RIR) operating as a "root" of trust. Similar to the IRR, operators can use the RPKI to discard routing messages that do not pass origin validation checks. But the additional integrity comes with complexity and cost. Furthermore, operational and legal implications of potential malfunctions have limited registration in and use of the RPKI. In response, some networks have redoubled their efforts to improve the accuracy of IRR registration data. These two technologies are now operating in parallel, along with the option of doing nothing at all to validate routes. Although RPKI use is growing, its limited coverage means that security-conscious operators may query both IRR and RPKI databases to maximize routing security. However, IRR information may be inaccurate due to improper hygiene, such as not updating the origin information after changes in routing policy or prefix ownership. Since RPKI uses a stricter registration and validation process, we use it as a baseline against which to compare the trends in accuracy and coverage of IRR data. 
    more » « less
  3. Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing. 
    more » « less
  4. IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic. 
    more » « less
  5. nycast has proven to be an effective mechanism to enhance resilience in the DNS ecosystem and for scaling DNS nameserver capacity, both in authoritative and the recursive resolver infrastructure. Since its adoption for root servers, anycast has mitigated the impact of failures and DDoS attacks on the DNS ecosystem. In this work, we quantify the adoption of anycast to support authoritative domain name service for top-level and second-level domains (TLDs and SLDs). Comparing two comprehensive anycast census datasets in 2017 and 2021, with DNS measurements captured over the same period, reveals that anycast adoption is increasing, driven by a few large operators. While anycast offers compelling resilience advantage, it also shifts some resilience risk to other aspects of the infrastructure. We discuss these aspects, and how the pervasive use of anycast merits a re-evaluation of how to measure DNS resilience. 
    more » « less
  6. IP addresses are commonly used to identify hosts or properties of hosts. The address assigned to a host may change, however, and the extent to which these changes occur in time as well as in the address space is currently unknown, especially in IPv6. In this work, we take a first step towards understanding the dynamics of IPv6 address assignments in various networks around the world and how they relate to IPv4 dynamics. We present fine-grained observations of dynamics using data collected from over 3,000 RIPE Atlas probes in dual-stack networks. RIPE Atlas probes in these networks report both their IPv4 and their IPv6 address, allowing us to track changes over time and in the address space. To corroborate and extend our findings, we also use a dataset containing 32.7 billion IPv4 and IPv6 address associations observed by a major CDN. Our investigation of temporal dynamics with these datasets shows that IPv6 assignments have longer durations than IPv4 assignments---often remaining stable for months---thereby allowing the possibility of long-term fingerprinting of IPv6 subscribers. Our analysis of spatial dynamics reveals IPv6 address-assignment patterns that shed light on the size of the address pools network operators use in domestic networks, and provides preliminary results on the size of the prefixes delegated to home networks. Our observations can benefit many applications, including host reputation systems, active probing methods, and mechanisms for privacy preservation. 
    more » « less
  7. null (Ed.)
    Anycast addressing - assigning the same IP address to multiple, distributed devices - has become a fundamental approach to improving the resilience and performance of Internet services, but its conventional deployment model makes it impossible to infer from the address itself that it is anycast. Existing methods to detect anycast IPv4 prefixes present accuracy challenges stemming from routing and latency dynamics, and efficiency and scalability challenges related to measurement load. We review these challenges and introduce a new technique we call "MAnycast2" that can help overcome them. Our technique uses a distributed measurement platform of anycast vantage points as sources to probe potential anycast destinations. This approach eliminates any sensitivity to latency dynamics, and greatly improves efficiency and scalability. We discuss alternatives to overcome remaining challenges relating to routing dynamics, suggesting a path toward establishing the capability to complete, in under 3 hours, a full census of which IPv4 prefixes in the ISI hitlist are anycast. 
    more » « less
  8. null (Ed.)
    We present the design, implementation, evaluation, and validation of a system that learns regular expressions (regexes) to extract Autonomous System Numbers (ASNs) from hostnames associated with router interfaces. We train our system with ASNs inferred by RouterToAsAssignment and bdrmapIT using topological constraints from traceroute paths, as well as ASNs recorded by operators in PeeringDB, to learn regexes for 206 different suffixes. Because these methods for inferring router ownership can infer the wrong ASN, we modify bdrmapIT to integrate this new capability to extract ASNs from hostnames. Evaluating against ground truth, our modification correctly distinguished stale from correct hostnames for 92.5% of hostnames with an ASN different from bdrmapIT’s initial inference. This modification allowed bdrmapIT to increase the agreement between extracted and inferred ASNs for these routers in the January 2020 ITDK from 87.4% to 97.1% and reduce the error rate from 1/7.9 to 1/34.5. This work presents a new avenue for collecting validation data, opening a broader horizon of opportunity for evidence-based router ownership inference. 
    more » « less