skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1901680

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundNutrient availability is among the most widespread means by which environmental variability affects developmental outcomes. Because almost all cells within an individual organism share the same genome, structure-specific growth responses must result from changes in gene regulation. Earlier work suggested thathistone deacetylases(HDACs) may serve as epigenetic regulators linking nutritional conditions to trait-specific development. Here we expand on this work by assessing the function of diverseHDACsin the structure-specific growth of both sex-shared and sex-specific traits including evolutionarily novel structures in the horned dung beetleOnthophagus taurus. ResultsWe identified fiveHDACmembers whose downregulation yielded highly variable mortality depending on whichHDACmember was targeted. We then show thatHDAC1,3, and4operate in both a gene- and trait-specific manner in the regulation of nutrition-responsiveness of appendage size and shape. Specifically,HDAC 1, 3,or4knockdown diminished wing size similarly while leg development was differentially affected by RNAi targetingHDAC3andHDAC4. In addition, depletion ofHDAC3transcript resulted in a more rounded shape of genitalia at the pupal stage and decreased the length of adult aedeagus across all body sizes. Most importantly, we find thatHDAC3andHDAC4pattern the morphology and regulate the scaling of evolutionarily novel head and thoracic horns as a function of nutritional variation. ConclusionCollectively, our results suggest that both functional overlap and division of labor amongHDACmembers contribute to morphological diversification of both conventional and recently evolved appendages. More generally, our work raises the possibility thatHDAC-mediated scaling relationships and their evolution may underpin morphological diversification within and across insect species broadly. 
    more » « less
  2. Abstract Understanding the origin of novel morphological traits is a long‐standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general. 
    more » « less
  3. Abstract Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships. 
    more » « less
  4. Abstract Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect thesizeof dung beetle horns also recapitulate the effect of hornshapeallometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g.,doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g.,Distal‐less,dachs) failed to align with allometry, implicating these pathways in potentially scaling‐independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity. 
    more » « less
  5. Abstract Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment‐sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male‐limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex‐specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition‐dependent plasticity in size and non‐isometric trait scaling rather than body‐size‐independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology. 
    more » « less
  6. Abstract In this study, we explored the potential contribution of the gut microbiome to reproductive isolation in tunnelling dung beetles, usingOnthophagus taurus(Schreber, 1759) and its sister speciesO. illyricus(Scopoli, 1763) as a model system (Coleoptera: Scarabaeidae: Scarabaeinae: Onthophagini). Gut microbiota play critical roles in normative development of these beetles, and are vertically inherited via a maternally derived faecal pellet called thepedestal. We first compared the developmental outcomes of individuals reared with pedestals derived from either the same or the sister species (SelfandCrossinoculation treatments, respectively). We then crossed the resulting adultO. taurusin three combinations (Selffemale XSelfmale;Selffemale XCrossmale;Crossfemale XSelfmale). We predicted that if the vertically transmitted gut microbiome plays a role in reproductive isolation by facilitating species recognition, theSelfXSelfline would have improved reproductive outcomes compared to the lines in which partners had mismatched gut microbiomes. Instead, we found that between‐partner concordance of maternally transmitted gut microbiota resulted in fewer offspring, and that this reduction was due to partial pre‐copulatory isolation as evidenced by reduced sperm transfer in theSelfXSelfline. This pattern is consistent either with microbiome‐mediated familiarity/kin recognition, or with absence of mate choice in crosses with mismatched microbiomes. We discuss our results in the light of recent research on the influence of extracellular microbial symbionts over insects' mating preferences. 
    more » « less
  7. Abstract Age and size at maturity are key life‐history components, yet the proximate underpinnings that mediate intra‐ and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades‐off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size–development time trade‐off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low‐quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species. 
    more » « less
  8. Abstract Colonization of new environments can lead to population bottlenecks and rapid phenotypic evolution that could be due to neutral and selective processes. Exotic populations of the bull‐headed dung beetle (Onthophagus taurus) have differentiated in opposite directions from native beetles in male horn‐to‐body size allometry and female fecundity. Here we test for genetic and transcriptional differences among two exotic and one nativeO. tauruspopulations after three generations in common garden conditions. We sequenced RNA from 24 individuals for each of the three populations including both sexes, and spanning four developmental stages for the two exotic, differentiated populations. Identifying 270,400 high‐quality single nucleotide polymorphisms, we revealed a strong signal of genetic differentiation between the three populations, and evidence of recent bottlenecks within and an excess of outlier loci between exotic populations. Differences in gene expression between populations were greatest in prepupae and early adult life stages, stages during which differences in male horn development and female fecundity manifest. Finally, genes differentially expressed between exotic populations also had greater genetic differentiation and performed functions related to chitin biosynthesis and nutrient sensing, possibly underlying allometry and fecundity trait divergences. Our results suggest that beyond bottlenecks, recent introductions have led to genetic and transcriptional differences in genes correlated with observed phenotypic differences. 
    more » « less
  9. Abstract Microbial symbionts can influence their hosts in stunningly diverse ways. Emerging research suggests that an underappreciated facet of these relationships is the influence microbes can have on their host's responses to novel, or stressful, environmental conditions. We sought to address these and related questions in populations resulting from the recent introduction and subsequent rapid range expansion ofOnthophagus taurusdung beetles. Specifically, we manipulated both microbial communities and rearing temperature to detect signatures of developmental and life history differentiation in response to the local thermal conditions in two populations derived from the southern most (Florida) and northern most (Michigan) extremes of the exotic Eastern U.S. range ofO. taurus. We then sought to determine the contributions, if any, of host‐associated microbiota to this differentiation. We found that when reared under common garden conditions individuals from Florida and Michigan populations differed significantly in developmental performance measures and life history traits, consistent with population divergence. At the same time, and contrary to our predictions, we failed to find support for the hypothesis that animals perform better if reared at temperatures that match their location of origin and that performance differences may be mediated by host‐associated microbiota. Instead, we found that microbiome swapping across host populations improved developmental performance in both populations, consistent with enemy release dynamics. We discuss the implications of our results for our understanding of the rapid spread of exoticO. taurusthrough the Eastern United States and the significance of symbiosis in host responses to novel environmental conditions more broadly. 
    more » « less
  10. Abstract Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull‐headed dung beetleOnthophagus tauruswhich is characterized by the polyphenic expression of horned (‘major’) and hornless (‘minor’) male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph‐specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph‐based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibiashapewas also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition acrossO. tauruspopulations. We discuss how sexual selection may shape morph‐specific integration, compensation, and allometry across populations. 
    more » « less