skip to main content


Search for: All records

Award ID contains: 1901718

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The complex process by which a single-celled zygote develops into a viable embryo is nothing short of a miraculous wonder of the natural world. Elucidating how this process is orchestrated in humans has long eluded the grasp of scientists due to ethical and practical limitations. Thankfully, pluripotent stem cells that resemble early developmental cell types possess the ability to mimic specific embryonic events. As such, murine and human stem cells have been leveraged by scientists to create in vitro models that aim to recapitulate different stages of early mammalian development. Here, we examine the wide variety of stem cell-based embryo models that have been developed to recapitulate and study embryonic events, from pre-implantation development through to early organogenesis. We discuss the applications of these models, key considerations regarding their importance within the field, and how such models are expected to grow and evolve to achieve exciting new milestones in the future. 
    more » « less
  2. Abstract Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1 , a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development. 
    more » « less
  3. null (Ed.)
  4. Abstract The human embryo is a complex structure that emerges and develops as a result of cell-level decisions guided by both intrinsic genetic programs and cell–cell interactions. Given limited accessibility and associated ethical constraints of human embryonic tissue samples, researchers have turned to the use of human stem cells to generate embryo models to study specific embryogenic developmental steps. However, to study complex self-organizing developmental events using embryo models, there is a need for computational and imaging tools for detailed characterization of cell-level dynamics at the single cell level. In this work, we obtained live cell imaging data from a human pluripotent stem cell (hPSC)-based epiblast model that can recapitulate the lumenal epiblast cyst formation soon after implantation of the human blastocyst. By processing imaging data with a Python pipeline that incorporates both cell tracking and event recognition with the use of a CNN-LSTM machine learning model, we obtained detailed temporal information of changes in cell state and neighborhood during the dynamic growth and morphogenesis of lumenal hPSC cysts. The use of this tool combined with reporter lines for cell types of interest will drive future mechanistic studies of hPSC fate specification in embryo models and will advance our understanding of how cell-level decisions lead to global organization and emergent phenomena. Insight, innovation, integration: Human pluripotent stem cells (hPSCs) have been successfully used to model and understand cellular events that take place during human embryogenesis. Understanding how cell–cell and cell–environment interactions guide cell actions within a hPSC-based embryo model is a key step in elucidating the mechanisms driving system-level embryonic patterning and growth. In this work, we present a robust video analysis pipeline that incorporates the use of machine learning methods to fully characterize the process of hPSC self-organization into lumenal cysts to mimic the lumenal epiblast cyst formation soon after implantation of the human blastocyst. This pipeline will be a useful tool for understanding cellular mechanisms underlying key embryogenic events in embryo models. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)