Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available September 1, 2024

null (Ed.)To Nicolás Andruskiewitsch on his 60th birthday, with admiration We introduce bivariate versions of the continuous [Formula: see text]Hermite polynomials. We obtain algebraic properties for them (generating function, explicit expressions in terms of the univariate ones, backward difference equations and recurrence relations) and analytic properties (determining the orthogonality measure). We find a direct link between bivariate continuous [Formula: see text]Hermite polynomials and the star product method of [S. Kolb and M. Yakimov, Symmetric pairs for Nichols algebras of diagonal type via star products, Adv. Math. 365 (2020), Article ID: 107042, 69 pp.] for quantum symmetric pairs to establish deformed quantum Serre relations for quasisplit quantum symmetric pairs of Kac–Moody type. We prove that these defining relations are obtained from the usual quantum Serre relations by replacing all monomials by multivariate orthogonal polynomials.more » « less

Abstract In the mid 1980s it was conjectured that every bispectral meromorphic function {\psi(x,y)} gives rise to an integral operator {K_{\psi}(x,y)} which possesses a commuting differential operator.This has been verified by a direct computation for several families of functions {\psi(x,y)} where the commuting differential operator is oforder {\leq 6} . We prove a general version of this conjecture for all selfadjoint bispectral functions of rank 1and all selfadjoint bispectral Darboux transformations of the rank 2 Bessel and Airy functions.The method is based on a theorem giving an exact estimate of the second and firstorder terms ofthe growth of the Fourier algebra of each such bispectral function. From it we obtaina sharp upper bound on the order of the commuting differential operator for theintegral kernel {K_{\psi}(x,y)} leading to a fast algorithmic procedurefor constructing the differential operator; unlike the previous examples its order is arbitrarily high.We prove that the above classes of bispectral functions are parametrized by infinitedimensionalGrassmannians which are the Lagrangian loci of the Wilson adelic Grassmannian and its analogsin rank 2.more » « less

Commuting integral and differential operators connect the topics of signal processing, random matrix theory, and integrable systems. Previously, the construction of such pairs was based on direct calculation and concerned concrete special cases, leaving behind important families such as the operators associated to the rational solutions of the Korteweg–de Vries (KdV) equation. We prove a general theorem that the integral operator associated to every wave function in the infinitedimensional adelic Grassmannian G r a d of Wilson always reflects a differential operator (in the sense of Definition 1 below). This intrinsic property is shown to follow from the symmetries of Grassmannians of Kadomtsev–Petviashvili (KP) wave functions, where the direct commutativity property holds for operators associated to wave functions fixed by Wilson’s sign involution but is violated in general. Based on this result, we prove a second main theorem that the integral operators in the computation of the singular values of the truncated generalized Laplace transforms associated to all bispectral wave functions of rank 1 reflect a differential operator. A 9 0 ○ rotation argument is used to prove a third main theorem that the integral operators in the computation of the singular values of the truncated generalized Fourier transforms associated to all such KP wave functions commute with a differential operator. These methods produce vast collections of integral operators with prolatespheroidal properties, including as special cases the integral operators associated to all rational solutions of the KdV and KP hierarchies considered by [Airault, McKean, and Moser, Commun. Pure Appl. Math. 30, 95–148 (1977)] and [Krichever, Funkcional. Anal. i Priložen. 12, 76–78 (1978)], respectively, in the late 1970s. Many examples are presented.more » « less