skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1901914

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the following mean field equation on a flat torus $$T:=\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau )$$: $$\begin{equation*} \varDelta u + \rho \left(\frac{e^{u}}{\int_{T}e^u}-\frac{1}{|T|}\right)=0, \end{equation*}$$where $$ \tau \in \mathbb{C}, \mbox{Im}\ \tau>0$$, and $|T|$ denotes the total area of the torus. We first prove that the solutions are evenly symmetric about any critical point of $$u$$ provided that $$\rho \leq 8\pi $$. Based on this crucial symmetry result, we are able to establish further the uniqueness of the solution if $$\rho \leq \min{\{8\pi ,\lambda _1(T)|T|\}}$$. Furthermore, we also classify all one-dimensional solutions by showing that the level sets must be closed geodesics. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)