skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1901984

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The U.S. bioeconomy has been estimated to be $950 billion and growing [1]. Sustaining this growth requires a skilled workforce who can manufacture goods developed through biotechnology. Scaling the biotechnology workforce to the needed level requires the ability to measure its size. The National Center for Education Statistics (NCES) is the federal agency responsible for gathering education data in the U.S. Colleges that receive federal funding are mandated by law to report data every year to the NCES. Given the comprehensive nature of these data, we sought to determine whether it could be used to measure the number of certificates and degrees in biotechnology awarded by two-year colleges. An unexpected challenge was the requirement by the NCES data retrieval page for Classification of Instructional Program (CIP) codes and the inconsistent use of CIP codes by college biotechnology programs. We were able to circumvent these challenges by using data from the InnovATEBIO National Center for Biotechnology Education. InnovATEBIO data allowed us to identify two-year colleges with biotechnology programs and use those results to learn which CIP codes were being assigned. Knowing the CIP codes and their use in different states supplied the information we needed to obtain certificate and degree completion data from the NCES. These data provided insights into the changing numbers and demographics of biotech students during the past twenty years. Not only are these data important for understanding trends in biotechnology education, they are imperative for guiding the initiation, development, and sustainability of biotechnology education programs at two-year colleges. 
    more » « less
    Free, publicly-accessible full text available January 24, 2026
  2. As a quick introduction, my name is Professor James Hewlett. I am a Professor of Biology at Finger Lakes Community College (FLCC) in Canandaigua, NY. In addition, I serve as the Program Coordinator for our A.S. Biotechnology degree program. Outside of my faculty role, I have served as the Executive Director of the Community College Undergraduate Research Initiative (CCURI) since 2007. With over 140 institutional partners, CCURI has focused on a mission of expanding opportunities for community college students to engage in an undergraduate research experience. The primary focus at Finger Lakes Community College is to work toward embedding these opportunities within the required course sequences and then provide additional opportunities for deeper exploration by participating in an active student research group. Although the current CCURI initiatives and efforts at FLCC are now operating at scale, the journey associated with this scaling effort continues to be defined by what can only be described as modest beginnings. 
    more » « less
  3. Community colleges play a vital role in preparing the highly skilled technical workforce needed to support the biotechnology industry. Community colleges offer students hands-on practical experience, certificates, and technical degrees. Students include high-school graduates, individuals changing careers, college graduates, and even PhD holders. As these colleges support the many facets of the biotechnology industry, their laboratories are equipped to teach modern techniques, including DNA sequencing, mass spectrometry, microscopy, chromatography, immunoassays, and bioinformatics. Many programs are also developing education skill standards and curriculum to support the latest biotechnology manufacturing that includes CRISPR-based gene therapies, CAR-T, immuno-therapeutics, and patient derived tissues. Some programs have established contract service organizations and business incubators to catalyze regional economic development and provide internships for students entering the workforce. These college-run organizations share many similarities with ABRF core facilities. Over the last 20+ years, community college biotechnology programs have come together to share experiences and learning through the Bio-Link network. Bio-Link was funded by the NSF-ATE (National Science Foundation Advanced Technological Education) program until the fall of 2018. In the fall of 2019, InnovATEBIO, a new national center for biotechnology education, was initiated through a five-year NSF-ATE award. InnovATEBIO will build on the Bio-Link foundation to further advance connections between high schools, community colleges, and the biotechnology industry to increase the number of highly trained biotechnology technicians in the United States. InnovATEBIO will support activities designed to increase authentic research and work-based experiences and seeks to develop collaborations with ABRF members supporting course development and partner on projects that could be funded by NSF or others. 
    more » « less