skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1902090

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 15, 2026
  2. We study random walks on various group extensions. Under certain bounded generation and bounded scaled conditions, we estimate the spectral gap of a random walk on a quasi-random-by-nilpotent group in terms of the spectral gap of its projection to the quasi-random part. We also estimate the spectral gap of a random-walk on a product of two quasi-random groups in terms of the spectral gap of its projections to the given factors. Based on these results, we estimate the spectral gap of a random walk on the F q {\mathbb {F}}_q -points of a perfect algebraic group G {\mathbb {G}} in terms of the spectral gap of its projections to the almost simple factors of the semisimple quotient of G {\mathbb {G}} . These results extend a work of Lindenstrauss and Varjú and an earlier work of the authors. Moreover, using a result of Breuillard and Gamburd, we show that there is an infinite set P \mathcal {P} of primes of density one such that, if k k is a positive integer and G = U ⋊<#comment/> ( SL 2 ) Q m {\mathbb {G}}={\mathbb {U}}\rtimes (\operatorname {SL}_2)_{\mathbb {Q}}^m is a perfect group and U {\mathbb {U}} is a unipotent group, then the family of all the Cayley graphs of G ( Z / ∏<#comment/> i = 1 k p i Z ) {\mathbb {G}}({\mathbb {Z}}/\prod _{i=1}^{k}p_i{\mathbb {Z}}) , p i ∈<#comment/> P p_i\in \mathcal {P} , is a family of expanders. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  3. Suppose\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})is generated by a symmetric setSof cardinalitynwherepis a prime number. Suppose the Cheeger constants of the Cayley graphs of\operatorname{SL}_{2}(\mathbb{F}_{p})with respect to\pi_{L}(S)and\pi_{R}(S)are at leastc_{0}, where\pi_{L}and\pi_{R}are the projections to the left and the right components of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p}), respectively. Then the Cheeger constant of the Cayley graph of\operatorname{SL}_{2}(\mathbb{F}_{p})\times \operatorname{SL}_{2}(\mathbb{F}_{p})with respect toSis at leastcwherecis a positive number which only depends onnandc_{0}. This gives an affirmative answer to a question of Lindenstrauss and Varjú. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025