- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Loving, Marissa (5)
-
Aougab, Tarik (2)
-
Lanier, Justin (2)
-
Xiao, Yang (2)
-
Agrawal, Shuchi (1)
-
Chandran, Yassin (1)
-
Field, Elizabeth (1)
-
Kim, Heejoung (1)
-
Lahn, Max (1)
-
Leininger, Christopher (1)
-
Oakley, J. Robert (1)
-
Shapiro, Roberta (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Given an irreducible, end‐periodic homeomorphism of a surface with finitely many ends, all accumulated by genus, the mapping torus, , is the interior of a compact, irreducible, atoroidal 3‐manifold with incompressible boundary. Our main result is an upper bound on the infimal hyperbolic volume of in terms of the translation length of on the pants graph of . This builds on work of Brock and Agol in the finite‐type setting. We also construct a broad class of examples of irreducible, end‐periodic homeomorphisms and use them to show that our bound is asymptotically sharp.more » « less
-
Agrawal, Shuchi; Aougab, Tarik; Chandran, Yassin; Loving, Marissa; Oakley, J. Robert; Shapiro, Roberta; Xiao, Yang (, Michigan Mathematical Journal)
-
Aougab, Tarik; Lahn, Max; Loving, Marissa; Xiao, Yang (, Geometriae Dedicata)
-
Lanier, Justin; Loving, Marissa (, Glasnik Matematicki)In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with finite-invariance index \(1\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups.more » « less
-
Lanier, Justin; Loving, Marissa (, Glasnik Matematicki)
An official website of the United States government
