Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study gains from trade in multi-dimensional two-sided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrained-additive buyer with feasibility constraint ℱ. Multi-dimensional settings in one-sided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are well-understood. In addition, single-dimensional settings in two-sided markets, e.g. where a buyer and seller each seek or own a single item, are also well-understood. Multi-dimensional two-sided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentive-compatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worst-case approximation guarantee for gains from trade in a multi-dimensional two-sided market. Our first result provides an O(log(1/r))-approximation to the first-best gains from trade for a broad class of downward-closed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)-approximation to the second-best gains from trade. We extend both results for a general constrained-additive buyer, losing another O(log n)-factor en-route. The first result is achieved using a fixed posted price mechanism, and the analysis involves a novel application of the prophet inequality or a new concentration inequality. Our second result follows from a stitching lemma that allows us to upper bound the second-best gains from trade by the first-best gains from trade from the “likely to trade” items (items with trade probability at least 1/n) and the optimal profit from selling the “unlikely to trade” items. We can obtain an O(log n)-approximation to the first term by invoking our O(log(1/r))-approximation on the “likely to trade” items. We introduce a generalization of the fixed posted price mechanism—seller adjusted posted price—to obtain an O(log n)-approximation to the optimal profit for the “unlikely to trade” items. Unlike fixed posted price mechanisms, not all seller adjusted posted price mechanisms are incentive compatible and budget balanced. We develop a new argument based on “allocation coupling” to show the seller adjusted posted price mechanism used in our approximation is indeed budget balanced and incentive-compatible.more » « less
-
Vidick, T. (Ed.)We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to put up for auction, and wishes to maximize the societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We describe a subclass of “safe-price” auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safeprice auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer.more » « less
An official website of the United States government

Full Text Available