Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
(1) Background: Nanoplastics are emerging environmental pollutants with potential toxic effects on aquatic organisms. This study investigates the toxicity of NPs in Biomphalaria glabrata, a freshwater snail species widely used as a bioindicator species in ecotoxicology studies.; (2) Methods: We exposed three generations (F0–F2) of B. glabrata snail embryos to different sizes of polystyrene nanoparticles and assessed responses.; (3) Results: We observed severe effects on F0 to F2 B. glabrata embryos, including size-dependent (30 to 500 nm) increases in mortality rates, size and dosage-dependent (1 to 100 ppm) effects on hatching rates with concentration-dependent toxicity in the 30 nm exposure group. The F2 generation embryos appear to be most responsive to detoxification (CYP450) and pollutant metabolism (HSP70) at 48-h-post-treatment (HPT), while our developmental marker (MATN1) was highly upregulated at 96-HPT. We also report a particle-size-dependent correlation in HSP70 and CYP450 mRNA expression, as well as enhanced upregulation in the offspring of exposed snails. We also observed significant reductions in hatching rates for F2.; (4) Conclusions: These findings indicate that F2 generation embryos appear to exhibit increased stress from toxic substances inherited from their parents and grandparents (F1 and F0). This study provides valuable insights into the impact of plastic particulate pollution on multiple generations and highlights the importance of monitoring and mitigating plastic waste.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Millions of tons of plastics enter the oceans yearly, and they can be fragmented by ultraviolet and mechanical means into nanoplastics. Here, we report the direct observation of nanoplastics in global ocean water leveraging a unique shrinking surface bubble deposition (SSBD) technique. SSBD involves optically heating plasmonic nanoparticles to form a surface bubble and leveraging the Marangoni flow to concentrate suspended nanoplastics onto the surface, allowing direct visualization using electron microscopy. With the plasmonic nanoparticles co-deposited in SSBD, the surface-enhanced Raman spectroscopy effect is enabled for direct chemical identification of trace amounts of nanoplastics. In the water samples from two oceans, we observed nanoplastics made of nylon, polystyrene, and polyethylene terephthalate—all common in daily consumables. The plastic particles have diverse morphologies, such as nanofibers, nanoflakes, and ball-stick nanostructures. These nanoplastics may profoundly affect marine organisms, and our results can provide critical information for appropriately designing their toxicity studies.more » « less
-
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHsviaphotooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.more » « less
An official website of the United States government
