Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactionsAbstract Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization ofo- andp-aminophenols under simulated aerosol and cloud conditions (pH 1–7, and ionic strength 0.01–1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4–0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products ofo- andp-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.more » « less
-
Abstract The fast spread of coronavirus disease 2019 (COVID‐19) constitutes a worldwide challenge to the public health, educational and trade systems, affecting the overall well‐being of human societies. The high transmission and mortality rates of this virus, and the unavailability of a vaccine or treatment, resulted in the decision of multiple governments to enact measures of social distancing. Such measures can reduce the exposure to bioaerosols, which can result in pathogen deposition in the respiratory tract of the host causing disease and an immunological response. Thus, it is important to consider the validity of the proposal for keeping a distance of at least 2 m from other persons to avoid the spread of COVID‐19. This work reviews the effect of aerodynamic diameter (size) of particles carrying RNA copies of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). A SARS‐CoV‐2 carrier person talking, sneezing or coughing at distance of 2 m can still provide a pathogenic bioaerosol load with submicron particles that remain viable in air for up to 3 h for exposure of healthy persons near and far from the source in a stagnant environment. The deposited bioaerosol creates contaminated surfaces, which if touched can act as a path to introduce the pathogen by mouth, nose or eyes and cause disease.more » « less
-
Formate (HCOO–) is the most dominant intermediate identified during carbon dioxide electrochemical reduction (CO2ER). While previous studies showed that copper (Cu)-based materials that include Cu(0), Cu2O, and CuO are ideal catalysts for CO2ER, challenges to scalability stem from low selectivity and undesirable products in the −1.0–1.0 V range. There are few studies on the binding mechanism of intermediates and products for these systems as well as on changes to surface sites upon applying potential. Here, we use an in situ approach to study the redox surface chemistry of formate on Cu thin films deposited on Si wafers using a VeeMAX III spectroelectrochemical (SEC) cell compatible with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra for surface species were collected in real time as a function of applied potential during cyclic voltammetry (CV) experiments. Results showed the reproducibility of CV curves on freshly prepared Cu/Si wafers with relatively high signal-to-noise ATR-FTIR absorbance features of surface species during these electrochemical experiments. The oxidation reaction of HCOO– to bicarbonate (HCO3–) was observed using ATR-FTIR at a voltage of 0.27 V. Samples were then subjected to reduction in the CV, and the aqueous phase products below the detection limit of the SEC-ATR-FTIR were identified using ion chromatography (IC). We report the formation of glycolate (H3C2O3–) and glyoxylate (HC2O3–) with trace amounts of oxalate (C2O42–), indicating that C–C coupling reactions proceed in these systems. Changes to the oxidation state of surface Cu were measured using X-ray photoelectron spectroscopy, which showed a reduction in Cu(0) and an increase in Cu(OH)2, indicating surface oxidation.more » « less
-
Potassium is used extensively as a promoter with iron catalysts in Fisher–Tropsch synthesis, water–gas shift reactions, steam reforming, and alcohol synthesis. In this paper, the identification of potassium chemical states on the surface of iron catalysts is studied to improve our understanding of the catalytic system. Herein, potassium-doped iron oxide (α-Fe2O3) nanomaterials are synthesized under variable calcination temperatures (400–800 °C) using an incipient wetness impregnation method. The synthesis also varies the content of potassium nitrate deposited on superfine iron oxide with a diameter of 3 nm (Nanocat®) to reach atomic ratios of 100 Fe:x K (x = 0–5). The structure, composition, and properties of the synthesized materials are investigated by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, Raman spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and X-ray photoelectron spectroscopy, as well as transmission electron microscopy, with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The hematite phase of iron oxide retains its structure up to 700 °C without forming any new mixed phase. For compositions as high as 100 Fe:5 K, potassium nitrate remains stable up to 400 °C, but at 500 °C, it starts to decompose into nitrites and, at only 800 °C, it completely decomposes to potassium oxide (K2O) and a mixed phase, K2Fe22O34. The doping of potassium nitrate on the surface of α-Fe2O3 provides a new material with potential applications in Fisher–Tropsch catalysis, photocatalysis, and photoelectrochemical processes.more » « less
-
null (Ed.)Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, of aqueous particles. Thus, the work also reviews the acid-base reaction that occurs when gaseous pyruvic acid meets the interface of aqueous microdroplets, which is contrasted with the same process for acetic acid. This work classifies relevant information needed to understand the photochemistry of aqueous pyruvic acid and glyoxylic acid and motivates future studies based on reports that use novel strategies and methodologies to advance this field.more » « less
An official website of the United States government
