skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1904091

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface‐modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac‐N‐LCLC) tactoids. In comparison to the parent chiral organic building blocks, D‐glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG‐modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.

     
    more » « less
  2. Abstract

    Aspheric lenses reduce aberration and provide sharper images with improved spot size compared to spherical lenses. This paper demonstrates that applying shear flow can produce plano‐concave liquid crystal (LC) lens arrays with paraboloid aspheric profiles. The focal length of individual lenses, with a 0.2 mm aperture, decreases from 0.67 to 0.45 mm as the chiral dopant increases from 0 to 6 wt%. The focal length is also sensitive to the polarization state of the incoming light. The lenses are stabilized by photopolymerizing with 6 wt% of reactive monomer added to the LC. A qualitative explanation for the flow‐induced lens formation and the optical properties of the lenses is provided. The potential tunability of the lenses in various fields and their use as paraboloid reflectors are discussed.

     
    more » « less
  3. Abstract

    The vast majority of nanomaterials studied in light of their ability to transmit chirality to or amplify their chirality in a surrounding medium, constitute an achiral core with chirality solely installed at the surface by conjugation or encapsulation with optically active ligands. Here we present the inverse approach focusing on surface‐modified cellulose nanocrystals (CNCs) with core chirality at both the molecular and the morphological level to quantify transmission and amplification of core chirality through space using a host nematic liquid crystal (N‐LC) as reporter. We find that CNCs functionalized at the surface with achiral molecules, structurally related to the N‐LC, exhibit better N‐LC solubility, thereby serving as highly efficient chiral inducers. Moreover, functionalization with chiral molecules only marginally enhances the efficacy of helical distortion in the host N‐LC matrix, indicating the high propensity of CNCs to transfer chirality from an inherently chiral core.

     
    more » « less
  4. Defined based on geometric concepts, the origin of biological homochirality including the single handedness of key building blocks, D-sugars and L-amino acids, is still heavily debated in many ongoing research endeavors. Origin aside, transmission and amplification of chirality across length scales are likely essential for the predominance of one handedness over the other in chiral systems and are attracting an unabated interest not only in biology but also in material science. To offer a measure for chirality and through-space chirality transfer, we here provide a report on recent progress toward the development of a suitable approach for an a priori prediction of chirality “strength” and efficacy of chirality transfer from a chiral solute to an achiral nematic solvent. We achieve this by combining an independently calculated, suitable pseudoscalar chirality indicator for the solute with another, independently calculated scalar solute–solvent shape compatibility factor. In our ongoing pursuit to put this approach to the test, we are advancing and refining a versatile experimental platform based on achiral gold nanoparticle cores varying in size, shape, and aspect ratio capped with monolayers of chiral molecules or on intrinsically chiral cellulose nanocrystals that serve as chiral solutes in an achiral nematic liquid crystal phase acting as a reporter medium. The pitch of the ensuing induced chiral nematic liquid crystal phase ultimately serves as a reporter medium that allows us to experimentally quantify and compare chirality and efficacy of chirality transfer. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)