skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1904527

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deep soils represent a dynamic interface between surface soils and saprolite or bedrock, influencing water flow, solute and gas exchange, and mineral and organic matter transformations from local to global scales. Root architecture reflects land cover and soil heterogeneity, enabling vegetation access to resources that vary temporally and spatially while shaping soil structure and formation. However, how land use can influence roots and soil structure relatively deep in the subsurface (>30 cm) remains poorly understood. We investigate how cropland‐related land use and subsequent vegetation recovery alter rooting dynamics and soil structure in deeper horizons. Using a large‐scale data set representing multiple land uses as a means of varying root abundance across four soil orders, we demonstrate that B horizon root loss and regeneration are linked to changes in multiple soil structural attributes deep within soil profiles. Our findings further suggest that the degree of soil development modulates the extent of structural transformations, with less‐developed soils showing greater susceptibility to root‐associated structural shifts. The greatest change in structural development and distinctness was observed in Inceptisols, while Ultisols exhibited the least change. Such soil structural changes affect water flowpaths, carbon retention, and nutrient transport throughout the subsurface. This work thus underscores the need for Earth system models to capture dynamic soil structural attributes that respond to land‐use change. We suggest that changes in deep‐rooting abundance, such as those accelerating in the Anthropocene, may be an important agent of subsurface structural change with meaningful implications for contemporary and future ecosystem feedbacks to climate. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Abstract In this manuscript, I provide ideas that may help early‐career colleagues on their paths in science, especially in research and academia. I discuss the inevitability of failure at times, the importance of finding great collaborators and mentors and making time for the things that bring you joy in your life, and suggest a few practices that I hope make us more pleasant human beings. I share a few difficulties I've navigated and advice I've shared with my students, postdocs, and early‐career colleagues through the years. I hope such thoughts are useful, and help others find the joy in being a scientist. 
    more » « less
  3. Abstract Geophysical methods have long been used in earth and environmental science for the characterization of subsurface properties. While imaging the subsurface opens the “black box” of subsurface heterogeneity, we argue here that these tools can be used in a more powerful way than characterization, which is to develop and test hypotheses. Critical zone science has opened new questions and hypotheses in the hydrologic sciences holistically around controls on water fluxes between surface, biological, and underground compartments. While groundwater flows can be monitored in boreholes, water fluxes from the atmosphere to the aquifer through the soil and the root system are more complex to study than boreholes can inform upon. Here, we focus on the successful application of various geophysical tools to explore hypotheses in critical zone hydrogeology and highlight areas where future contributions could be made. Specifically, we look at questions around subsurface structural controls on flow, the dimensionality and partitioning of those flows in the subsurface, plant water uptake, and how geophysics may be used to constrain reactive transport. We also outline areas of future research that may push the boundaries of how geophysical methods are used to quantify critical zone complexity. This article is categorized under:Water and Life > Nature of Freshwater EcosystemsScience of Water > Hydrological ProcessesWater and Life > Methods 
    more » « less
  4. Abstract Earth's Critical Zone (CZ), the near‐surface layer where rock is weathered and landscapes co‐evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth's ice‐free continental surface and provide important water resources and ecosystem services to ∼1.2 billion people. Unlike silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions about carbonate CZ processes. We introduce the concept of a carbonate‐silicate CZ spectrum and examine whether current conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance beyond site‐specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we need integrative studies spanning both the carbonate‐silicate spectrum and a range of carbonate settings. 
    more » « less
  5. Critical Zone (CZ) science investigates the interconnected processes occurring from the top of the vegetation canopy to the base of the groundwater. Recognizing the need to foster cross- disciplinary collaboration among early-career researchers (ECRs), graduate students organized two workshops in 2024 and 2025 aimed at building community, sharing research approaches, and discussing the future of CZ science. These workshops brought together participants from diverse disciplines, institutions, and career stages, and included research talks, structured discussions, and community-building activities. Survey results demonstrated increased confidence in cross-disciplinary collaboration and highlighted the value of supportive, in-person settings for networking and broadening scientific perspectives. Recommendations include expanding support for small, ECR-focused workshops and prioritizing institutional structures that sustain collaborative, transdisciplinary CZ research. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  6. Abstract. Plant hydraulic properties are critical to predicting vegetation water use as part of land-atmosphere interactions and plant responses to drought. However, current measurements of plant hydraulic properties are labour-intensive, destructive, and difficult to scale up, consequently limiting the comprehensive characterization of whole-plant hydraulic properties and hydraulic parameterization in land-surface modelling. To address these challenges, we develop a method, a pumping-test analogue, using sap-flow and stem water-potential data to derive whole-plant hydraulic properties, namely maximum hydraulic conductance, effective capacitance, and Ψ50 (water potential at which 50 % loss of hydraulic conductivity occurs). Experimental trials on Allocasuarina verticillata indicate that the parameters derived over short periods (around 7 days) exhibit good representativity for predicting plant water use over at least one month. We applied this method to estimate near-continuous whole-plant hydraulic properties over one year, demonstrating its potential to supplement existing labour-intensive measurement approaches. The results reveal the seasonal plasticity of the effective plant hydraulic capacitance. They also confirm the seasonal plasticity of maximum hydraulic conductance and the hydraulic vulnerability curve, known in the plant physiology community while neglected in the hydrology and land-surface modelling community. It is found that the seasonal plasticity of hydraulic conductance is associated with climate variables, providing a way forward to represent seasonal plasticity in models. The relationship between derived maximum hydraulic conductance and Ψ50 also suggests a trade-off between hydraulic efficiency and safety of the plant. Overall, the pumping-test analogue offers potential for better representation of plant hydraulics in hydrological modelling, benefitting land-management and land-surface process forecasting. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  7. Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives. 
    more » « less