Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub‐wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light–matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light–matter interactions across several scales.more » « less
-
The roles of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and water in controlling the mechanism, energetics, and electrocatalytic activity of CO2 reduction to CO on silver in nonaqueous electrolytes were investigated. The first electron transfer occurs to CO2 at reduced overpotentials when it is trapped between the planes of the [EMIM]+ ring and the electrode surface due to cation reorientation as determined from voltammetry, in situ surface-enhanced Raman spectroscopy, and density functional theory calculations. Within this interface, water up to 0.5 M does not induce significant Faradaic activity, opposing the notion of it being a free proton source. Instead, water acts as a hydrogen bond donor, and the proton is sourced from [EMIM]+. Furthermore, this study demonstrates that alcohols with varying acidities tune the hydrogen bonding network in the interfacial microenvironment to lower the energetics required for CO2 reduction. The hydrogen bonding suppresses the formation of inactive carboxylate species, thus preserving the catalytic activity of [EMIM]+. The ability to tune the hydrogen bonding network opens new avenues for advancing IL-mediated electrocatalytic reactions in nonaqueous electrolytes.more » « lessFree, publicly-accessible full text available August 15, 2025
-
Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications.more » « less
-
Hydrogen (H 2 ) sensing is crucial in a wide variety of areas, such as industrial, environmental, energy and biomedical applications. However, engineering a practical, reliable, fast, sensitive and cost-effective hydrogen sensor is a persistent challenge. Here we demonstrate hydrogen sensing using aluminum-doped zinc oxide (AZO) metasurfaces based on optical read-out. The proposed sensing system consists of highly ordered AZO nanotubes (hollow pillars) standing on a SiO 2 layer deposited on a Si wafer. Upon exposure to hydrogen gas, the AZO nanotube system shows a wavelength shift in the minimum reflectance by ∼13 nm within 10 minutes for a hydrogen concentration of 4%. These AZO nanotubes can also sense the presence of a low concentration (0.7%) of hydrogen gas within 10 minutes. Their rapid response time even for a low concentration, the possibility of large sensing area fabrication with good precision, and high sensitivity at room temperature make these highly ordered nanotube structures a promising miniaturized H 2 gas sensor.more » « less