Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract There has been considerable interest in developing synthetic micromotors with biofunctional, versatile, and adaptive capabilities for biomedical applications. In this perspective, cell membrane‐functionalized micromotors emerge as an attractive platform. This new class of micromotors demonstrates enhanced propulsion and compelling performance in complex biological environments, making them suitable for various in vivo applications, including drug delivery, detoxification, immune modulation, and phototherapy. This article reviews various proof‐of‐concept studies based on different micromotor designs and cell membrane coatings in these areas. The review focuses on the motor structure and performance relationship and highlights how cell membrane functionalization overcomes the obstacles faced by traditional synthetic micromotors while imparting them with unique capabilities. Overall, the cell membrane‐functionalized micromotors are expected to advance micromotor research and facilitate its translation towards practical uses.more » « less
-
Abstract Biological neutralization represents a general strategy that deploys therapeutic agents to bind with harmful molecules or infectious pathogens, block their bioactivity, and thus prevent them from causing the diseases. Here, a comprehensive review of using cell‐membrane‐coated nanoparticles, namely “cellular nanosponges,” as host decoys for a wide range of biological neutralization applications is provided. Compared to traditional neutralization strategies, the cellular nanosponges stand out by mimicking susceptible host cells rather than accommodating the structures of the causative agents for the design of therapeutics. As all pathological agents must interact with host cells for bioactivity, nanosponges bypass the diversity of these agents and create function‐driven and broad‐spectrum neutralization solutions. The review focuses on the recent progress of using this new nanomedicine platform for neutralization against five primary pathological agents, including bacterial toxins, chemical toxicants, inflammatory cytokines, pathological antibodies, and viruses. Existing studies have established cellular nanosponges as versatile tools for biological neutralization. A thorough review of the cellular nanosponge technology is expected to inspire more refined cellular nanosponge designs and unique neutralization applications to address unsolved medical problems.more » « less
-
Abstract Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in ‘lure and kill’ mechanism (denoted ‘MΦ-NP(L&K)’) for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.more » « less
-
Abstract White blood cells (WBCs) are immune cells that play essential roles in critical diseases including cancers, infections, and inflammatory disorders. Their dynamic and diverse functions have inspired the development of WBC membrane‐coated nanoparticles (denoted “WBC‐NPs”), which are formed by fusing the plasma membranes of WBCs, such as macrophages, neutrophils, T cells, and natural killer cells, onto synthetic nanoparticle cores. Inheriting the entire source cell antigens, WBC‐NPs act as source cell decoys and simulate their broad biointerfacing properties with intriguing therapeutic potentials. Herein, the recent development and medical applications of WBC‐NPs focusing on four areas, including WBC‐NPs as carriers for drug delivery, as countermeasures for biological neutralization, as nanovaccines for immune modulation, and as tools for the isolation of circulating tumor cells and fundamental research is reviewed. Overall, the recent development and studies of WBC‐NPs have established the platform as versatile nanotherapeutics and tools with broad medical application potentials.more » « less
-
Abstract Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K‐NP”). The L&K‐NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in‐coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K‐NP structure, which voids toxicity associated with free molecules. In the study, L&K‐NPs effectively inhibit PLA2‐induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K‐NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K‐NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti‐PLA2 approach.more » « less
An official website of the United States government
